精英家教網 > 初中數學 > 題目詳情

【題目】某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學生比較多.為了解學生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調查,過程如下,請補充完整.

收集數據 從選擇籃球和排球的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:

排球 10 9.5 9.5 10 8 9 9.5 9

7 10 4 5.5 10 9.5 9.5 10

籃球 9.5 9 8.5 8.5 10 9.5 10 8

6 9.5 10 9.5 9 8.5 9.5 6

整理、描述數據 按如下分數段整理、描述這兩組樣本數據:

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

1

2

7

5

籃球

(說明:成績8.5分及以上為優秀,6分及以上為合格,6分以下為不合格.)

分析數據 兩組樣本數據的平均數、中位數、眾數如下表所示:

項目

平均數

中位數

眾數

排球

8.75

9.5

10

籃球

8.81

9.25

9.5

得出結論

(1)如果全校有160人選擇籃球項目,達到優秀的人數約為_____人;

(2)初二年級的小明和小軍看到上面數據后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.

你同意______ 的看法,理由為__________.(至少從兩個不同的角度說明推斷的合理性)

【答案】130小明平均數接近,而排球成績的中位數和眾數都較高.

【解析】

(1)根據題意可補全表格成績,可知選擇籃球項目達到優秀的人數為13人,進而可求出答案.

(2)(3)根據平均數、中位數、眾數的概念進行分析比較即可.

根據題中數據,補全表格成績:

人數

項目

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

1

2

7

5

籃球

0

2

1

10

3

(1)由表中可知,籃球項目優秀的人數有13人,所以160人中達到優秀的人數約為160×=130(人);

故答案為:130;

(2)同意小明的看法,理由為:

平均數接近,而排球成績的中位數和眾數都較高.(答案不唯一,理由需要支持判斷結論)

故答案為:小明,平均數接近,而排球成績的中位數和眾數都較高.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學我最喜愛的體育項目進行了一次調查統計,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請你根據圖中提供的信息,解答以下問題:

(1)該班共有_____名學生;

(2)補全條形統計圖;

(3)在扇形統計圖中,乒乓球部分所對應的圓心角度數為_____;

(4)學校將舉辦體育節,該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC和△BDE是等腰直角三角形,∠ABC=DBE=90°,點DAC.

1)求證:△ABD≌△CBE;

2)若DB=1,求AD2+CD2的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我國漢代數學家趙爽為了證明勾股定理,創制了一幅弦圖,后人稱其為趙爽弦圖,如圖所示,它是由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1,S2,S3,若正方形EFGH的邊長為4,則S1+S2+S3的值為___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過點A2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.

1)求點B的坐標;

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AC3,BC4.分別以AB、AC、BC為邊在AB的同側作正方形ABEFACPQ、BCMN,四塊陰影部分的面積分別為S1、S2、S3、S4.則S1S2+S3+S4等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视