精英家教網 > 初中數學 > 題目詳情

【題目】如圖,, , ,上取一點,為直徑作,相交于點,作線段的垂直平分線于點,連接

(1) 求證:的切線;

(2),的半徑為.求線段與線段的長.

【答案】(1)見解析;(2)

【解析】

(1)根據題意,證出ENOE垂直即可;

(2)求線段的長一般構造直角三角形,利用勾股定理來求解.RtOEN、RtOCN△中,EN=ON-OE,ON=OC+CN,CN=4-EN代入可求EN;同理構造直角三角形RtAEDRtEDB、RtDCB,AE=AD-DE,DE=DB-BE,DB=CD+CB=1+4=17,代入求AE.

證明:連接

的垂直平分線

是半徑

是圓的切線

解:連接

長為,則

,圓的半徑為

解得,所以

連接

AB=5,

AD是直徑,

∴△ADE是直角三角形

為直徑,

∴△DEB是直角三角形,

(2-y)+(5-y) =17

解得

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某小微企業為加快產業轉型升級步伐,引進一批A,B兩種型號的機器.已知一臺A型機器比一臺B型機器每小時多加工2個零件,且一臺A型機器加工80個零件與一臺B型機器加工60個零件所用時間相等.

1)每臺A,B兩種型號的機器每小時分別加工多少個零件?

2)如果該企業計劃安排A,B兩種型號的機器共10臺一起加工一批該零件,為了如期完成任務,要求兩種機器每小時加工的零件不少于72件,同時為了保障機器的正常運轉,兩種機器每小時加工的零件不能超過76件,那么A,B兩種型號的機器可以各安排多少臺?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形的對角線相交于點,點為邊的中點.若菱形的周長為16,,則的面積是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小紅將筆記本電腦水平放置在桌子上,當顯示屏與底板所在水平線的夾角為120°時,感覺最舒適(如圖1),側面示意圖如圖2. 使用時為了散熱,她在底板下墊入散熱架后,電腦轉到位置(如圖3),側面示意圖為圖4. 已知,于點,.

1)求的度數.

2)顯示屏的頂部比原來的頂部升高了多少?

3)如圖4,墊入散熱架后,要使顯示屏與水平線的夾角仍保持120°,則顯示屏應繞點'按順時針方向旋轉多少度?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,請在下列四個關系中,選出兩個恰當的關系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)

關系:①ADBC,AB=CD,③∠A=C,④∠B+C=180°.

已知:在四邊形ABCD中,      ,      

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC

1)試判斷BC與⊙O的位置關系,并說明理由;

2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“康河泛舟,問道劍橋”,甲乙兩人相約泛舟康河,路線均為從再返回,且全長2千米,甲出發2分鐘后,乙以另一速度出發,結果同時到達目的地,甲到達目的地拍照5分鐘便原速返回地;乙到達地后休息了2分鐘,然后立即提速為原速的倍返回地.甲乙之間的距離(單位:米)與甲的行駛時間(單位:分鐘)之間的函數關系如圖所示.則當乙回到地時,甲距離________米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.

1)求點B的坐標(用含的式子表示);

2)求拋物線的對稱軸;

3)已知點,.若拋物線與線段PQ恰有一個公共點,結合函數圖象,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經調查發現:用元購進類玩具的數量與用元購進類玩具的數量相同.

1)求的進價分別是每個多少元?

2)該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视