【題目】如圖,在中,點
是對角線
的中點,點
在
上,且
,連接
并延長交
于點F.過點
作
的垂線,垂足為
,交
于點
.
(1)求證:;
(2)若.
①求證:;
②探索與
的數量關系,并說明理由.
【答案】(1)見解析;(2)①見解析,②,理由見解析.
【解析】
(1)根據平行四邊形的性質得到∠OAF=∠OCE,證明△OAF≌△OCE,根據全等三角形的對應邊相等證明結論;
(2)①過A作AM⊥BC于M,交BG于K,過G作GN⊥BC于N,根據三角形的外角性質得到∠BAG=∠BGA;
②證明△AME≌△BNG,根據全等三角形的性質得到ME=NG,根據等腰直角三角形的性質得到BE=GC,根據(1)中結論證明即可.
(1)證明:∵四邊形是平行四邊形,
∴,
,
∴,
在和
中,
,
∴
∴,
∵,
∴;
(2)①過作
于
,交
于
,過
作
于
,
則,
∵,
∴,
∵,
∴,
,
∵,
∴,又
,
∴,
設,
則,
,
∴;
②,
理由如下:∵,
∴,
∴,
在和
中,
,
∴,
∴,
在等腰中,
,
∴,
∴,
∵,
∴.
科目:初中數學 來源: 題型:
【題目】10袋小麥以每袋150干克為準,超過的干克數記為正數,不足的干克數記為負數,分別記為:-6,-3,-1,-2,+7,+3,+4,-3,-2,0.
(1)在這10袋小麥中,最重和最輕的分別重多少干克?
(2)與標準質量相比較,這10袋小麥超過或不足多少干克?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,且AB=4,點C在半徑OA上(點C與點O、點A不重合),過點C作AB的垂線交⊙O于點D.連接OD,過點B作OD的平行線交⊙O于點E,交CD的延長線于點F.
(1)若點E是的中點,求∠F的度數;
(2)求證:BE=2OC;
(3)設AC=x,則當x為何值時BEEF的值最大?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有20箱蘋果,以每箱25千克為標準,超過的千克數用正數表示,不足的千克數用負數表示,結果記錄如表:
(1)20箱蘋果中,最重的一箱比最輕的一箱重 kg;
(2)與標準質量相比,20箱蘋果總計超過或不足多少千克?
(3)若蘋果每千克售價12元,則售出這20箱蘋果可獲得多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家、公交車站、學校在一條筆直的公路旁(小明家、學校到這條公路的距離忽略不計),一天,小明從家出發去上學,沿這條公路步行到公交車站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小明下車時發現還有4分鐘上課,于是他沿這條公路跑步趕到學校(上、下車時間忽略不計),小明與家的距離s(單位:米)與他所用時間t(單位:分鐘)之間的函數關系如圖所示,已知小明從家出發7分鐘時與家的距離為1200米,從上公交車到他到達學校共用10分鐘,下列說法:
①小明從家出發5分鐘時乘上公交車 ②公交車的速度為400米/分鐘
③小明下公交車后跑向學校的速度為100米/分鐘 ④小明上課沒有遲到
其中正確的個數是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一列數:,
,
,
,
,
,
,
這串數是由小明按照一定規則寫下來的,他第一次寫下“
,
”,第二次接著寫“
,
”,第三次接著寫“
,
”,第四次接著寫“
,
”,沿著這個規則,那么接著“
,
”后面的三個數應為( )
A.,
,
B.
,
,
C.
,
,
D.
,
,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數y=x的圖象與函數y=(x>0)的圖象相交于點P(2,m).
(1)求m,k的值;
(2)直線y=4與函數y=x的圖象相交于點A,與函數y=(x>0)的圖象相交于點B,求線段AB長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】[x]表示不超過x的最大整數.如,[π]=3,[2]=2,[﹣2.1]=﹣3.則下列結論:
①[﹣x]=﹣[x];
②若[x]=n,則x的取值范圍是n≤x<n+1;
③當﹣1<x<1時,[1+x]+[1﹣x]的值為1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一個解.
其中正確的結論有_____(寫出所有正確結論的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com