分析 (1)根據題意,在△ABM中,∠BAM=30°,∠ABM=45°,BM=300($\sqrt{3}$+l)米.通過解直角Rt△MBD求得MD的長度;
(2)通過解直角Rt△ADM求得AM的長度.
解答 解:由題意可知∠MBD=45°,∠MAD=30°.
(1)在Rt△MBD中,DM=BM•sin∠DBM=300×sin45°=150$\sqrt{2}$(米);
(2)在Rt△ADM中,AM=$\frac{DM}{sin∠DAM}$=$\frac{150\sqrt{2}}{sin30°}$=300$\sqrt{2}$(米).
點評 本題考查了解直角三角形的應用--方向角問題.解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.
科目:初中數學 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 8$\sqrt{6}$+24 | B. | 8$\sqrt{6}$+8 | C. | 24+8$\sqrt{3}$ | D. | 8+8$\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com