【題目】下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規作圖過程:
已知:如圖,直線l和直線l外一點A
求作:直線AP,使得AP∥l
作法:如圖
①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.
②連接AC,AB,延長BA到點D;
③作∠DAC的平分線AP.
所以直線AP就是所求作的直線
根據小星同學設計的尺規作圖過程,
(1)使用直尺和圓規,補全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依據)
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依據)
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依據)
【答案】(1)詳見解析;(2)(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).
【解析】
(1)根據角平分線的尺規作圖即可得;
(2)分別根據等腰三角形的性質、三角形外角的性質和平行線的判定求解可得.
解:(1)如圖所示,直線AP即為所求.
(2)證明:∵AB=AC,
∴∠ABC=∠ACB(等邊對等角),
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB(三角形外角性質),
∴∠DAC=2∠ABC,
∵AP平分∠DAC,
∴∠DAC=2∠DAP,
∴∠DAP=∠ABC,
∴AP∥l(同位角相等,兩直線平行),
故答案為(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數y=(k為常數,且k≠0)的圖象經過點A(1,3)、B(3,m).
(1)求反比例函數的解析式及B點的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣5交y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點A作AD∥x軸交拋物線于點D.
(1)求此拋物線的表達式;
(2)點E是拋物線上一點,且點E關于x軸的對稱點在直線AD上,求△EAD的面積;
(3)若點P是直線AB下方的拋物線上一動點,當點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標和△ABP的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知多邊形是
的內接正六邊形,聯結
、
,點
是射線
上的一個動點,聯結
,直線
交射線
于點
,作
交
的延長線于點
,設
的半徑為
.
(1)求證:四邊形是矩形.
(2)當經過點
時,
與
外切,求
的半徑(用
的代數式表示).
(3)當,求點
、
、
、
構成的四邊形的面積(用
及含
的三角比的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是圓O的直徑,點C是圓O上一點,∠CAB=30°,D是直徑AB上一動點,連接CD并過點D作CD的垂線,與圓O的其中一個交點記為點E(點E位于直線CD上方或左側),連接EC.已知AB=6cm,設A、D兩點間的距離為xcm,C、D兩點間的距離為y1cm,E、C兩點間的距離為y2cm,小雪根據學習函數的經驗,分別對函數y1,y2隨自變量x的變化而變化的規律進行了探究.下面是小雪的探究過程:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.2 | 4.4 | 3.6 | 3.0 | 2.7 | 2.7 |
|
y2/cm | 5.2 | 4.6 | 4.2 |
| 4.8 | 5.6 | 6.0 |
(1)按照下表中自變量x的值進行取點、面圖、測量,分別得到了y1,y2與x的幾組對應值,請將表格補充完整:(保留一位小數)
(2)在同一平面直角坐標系xOy中,y2的圖象如圖所示,描出補全后的表中各組數值所對應的點(x,y1),(x,y2),并畫出函數y1的圖象;
(3)結合函數圖象,解決問題:當∠ECD=60°時,AD的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,在8×8的網格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內接格點三角形”,設對稱軸平行于y軸的拋物線與網格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內接格點三角形,且AB=3,點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線的條數是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,正方形中,
、
分別是
、
邊長的點,
與
交于點
,
.求證:
;
(2)如圖2,矩形中,
,
、
分別是
、
邊上的點,
與
交于點
,
.求證:
;
(3)如圖3,若(2)種的四邊形是平行四邊形,且
,則
是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com