【題目】設點和
是反比例函數
圖象上的兩個點,當
<
<
時,
<
,則一次函數
的圖象不經過的象限是
A.第一象限 B.第二象限 C.第三象限 D.第四象限
科目:初中數學 來源: 題型:
【題目】現今“微信運動”被越來越多的人關注和喜愛,某興趣小組隨機調查了我市50名教師某日“微信運動”中的步數情況進行統計整理,繪制了如下的統計圖表(不完整):
步數 | 頻數 | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請根據以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補全頻數分布直方圖;
(2)本市約有37800名教師,用調查的樣本數據估計日行走步數超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調查的教師中,選取日行走步數超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某游泳館每年夏季推出兩種游泳付費方式.方式一:先購買會員證,每張會員證100元,只限本人當年使用,憑證游泳每次再付費4元;方式二:不購買會員證,每次游泳付費10元.設小明計劃今年夏季游泳次數為x(x為正整數).
(1)根據題意,填寫下表:
游泳次數 | 10 | 15 | 20 | … | x |
方式一的總費用(元) | 140 | 160 | _______ | … | _______ |
方式二的總費用(元) | 100 | 150 | ________ | … | ________ |
(2)若小明計劃今年夏季游泳的總費用為260元,選擇哪種付費方式,他游泳的次數比較多?
(3)小明選擇哪種付費方式更合算?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明對,
,
,
四個中小型超市的女工人數進行了統計,并繪制了下面的統計圖表,已知
超市有女工20人.所有超市女工占比統計表
超市 | ||||
女工人數占比 | 62.5% | 62.5% | 50% | 75% |
(1)超市共有員工多少人?
超市有女工多少人?
(2)若從這些女工中隨機選出一個,求正好是超市的概率;
(3)現在超市又招進男、女員工各1人,
超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:
(1)九(1)班的學生人數為 ,并把條形統計圖補充完整;
(2)扇形統計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學生中有3男1女,現在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據銷售情況,發現該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數關系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交⊙O于E,D為BE延長線上一點,且∠DAE=∠FAE.
(1)求證:AD為⊙O切線;
(2)若sin∠BAC=,求tan∠AFO的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:點P在一次函數圖象上,點Q在反比例函數
圖象上,若存在點P與點Q關于原點對稱,我們稱二次函數
為一次函數
與反比例函數
的“新時代函數”,點P稱為“幸福點”。
(1)判斷與
是否存在“新時代函數”,如果存在,請求出“幸福點”坐標,如果不存在,請說明理由;
(2)若反比例函數與一次函數
有兩個“幸福點”,
和
,且
,求其“新時代函數”的解析式;
(3)若一次函數和反比例函數
在自變量x的值滿足
的情況下,其“新時代函數”的最小值為3,求m的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com