精英家教網 > 初中數學 > 題目詳情

【題目】已知函數f(x)= x3 x2+logax,(a>0且a≠1)為定義域上的增函數,f'(x)是函數f(x)的導數,且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設函數 ,且g(x1)+g(x2)=0,求證:

【答案】(Ⅰ)解: , 由f(x)為增函數可得,f'(x)≥0恒成立,即 ,得
設m(x)=2x3﹣3x2 , 則m'(x)=6x2﹣6x(x>0),
由m'(x)=6x(x﹣1)>0,得x>1,由m'(x)=6x(x﹣1)<0,得0<x<1.
∴m(x)在(0,1)上減,在(1,+∞)上增,在1處取得極小值即最小值,
∴m(x)min=m(1)=﹣1,則 ,即 ,
當a>1時,易知a≤e,當0<a<1時,則 ,這與 矛盾,從而不能使得f'(x)≥0恒成立,
∴a≤e;
由f'(x)min≤0可得, ,即 ,
由之前討論可知, ,當1>a>0時, 恒成立,
當a>1時,由1≥ ,得a≥e,
綜上a=e;
(Ⅱ)證明:
∵g(x1)+g(x2)=0,
,
,
,

,
令x1x2=t,g(t)=lnt﹣t,
,g(t)在(0,1)上增,在(1,+∞)上減,g(t)≤g(1)=﹣1,
,
整理得
解得 (舍),

【解析】(Ⅰ)求出原函數的導函數,由題意可得f'(x)≥0恒成立,即 ,構造函數m(x)=2x3﹣3x2 , 利用導數求其最小值,由其最小值大于等于 可得a≤e;再由f'(x)min≤0求得a≥e,可得a=e; (Ⅱ)由 ,結合g(x1)+g(x2)=0,可得 ,令x1x2=t,g(t)=lnt﹣t,求導可得g(t)≤g(1)=﹣1,得到 ,求解得答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.

(1)b= , c= , 點B的坐標為;(直接填寫結果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】作圖題:(要求保留作圖痕跡,不寫作法)

1)作△ABCBC邊上的垂直平分線EF(交AC于點E,交BC于點F);

2)連結BE,若AC=10,AB=6,求△ABE的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的方程2x2+x﹣a=0有兩個不相等的實數根,則實數a的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設正實數x,y,z滿足x2﹣3xy+4y2﹣z=0.則當 取得最大值時, 的最大值為(
A.0
B.1
C.
D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數列{an}中,a2=
(1)若數列{an}滿足2an﹣an+1=0,求an;
(2)若a4= ,且數列{(2n﹣1)an+1}是等差數列,求數列{ }的前n項和Tn

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設集合 ,B={(x,y)|y=3x},則A∩B的子集的個數是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設函數f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),則mn的取值范圍為(
A.
B.
C.(1,3)
D.(1,3]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義在R上的奇函數f(x)滿足f(x+1)=f(﹣x),當x∈(0, ]時,f(x)= (1﹣x),則f(x)在區間(1, )內是(
A.減函數且f(x)>0
B.減函數且f(x)<0
C.增函數且f(x)>0
D.增函數且f(x)<0

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视