精英家教網 > 初中數學 > 題目詳情

【題目】已知AB是⊙O的直徑,弦CDAB于點E

1)如圖①,若CD8,BE2,求⊙O的半徑;

(2)如圖②,點G上一點,AG的延長線與DC的延長線交于點F,求證:∠AGD=∠FGC

【答案】(1)5 (2)見解析

【解析】

1)連接OD,設⊙O的半徑為r,根據垂徑定理求出DE,根據勾股定理列式計算;

2)連接AD,根據垂徑定理得到 ,根據圓周角定理得到∠ADC=∠AGD,根據圓內接四邊形的性質得到∠ADC=∠FGC,等量代換即可證明.

1)解:如圖①,連接OD,

設⊙O的半徑為r,則OEr2,

AB是⊙O的直徑,弦CDAB,

DECD4,

RtOED中,OD2OE2+DE2,即r2=(r22+42,

解得:r5,即⊙O的半徑為5

2)證明:如圖②,連接AD,

AB是⊙O的直徑,弦CDAB,

,

∴∠ADC=∠AGD

∵四邊形ADCG是圓內接四邊形,

∴∠ADC=∠FGC,

∴∠FGC=∠AGD

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD對角線交于點O,BEACAEBD,EOAB交于點F.

(1)求證:四邊形AEBO是矩形.

(2)CD=5,求OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知等邊ABC邊長為2,DBC中點,連接AD.O在線段AD上運動(不含端點A、D),以點O為圓心,長為半徑作圓,當OABC的邊有且只有兩個公共點時,DO的取值范圍為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.5米的正方形.點E、F分別在邊上,、和四邊形均由單一材料制成,制成、和四邊形的三種材料的價格依次為每平方米30元、20元、10元.若將此種地磚按圖(2)所示的形式鋪設,且中間的陰影部分組成正方形.設

1_________________.(用含有x的代數式表示).

2)已知燒制該種地磚平均每塊需加工費0.35元,若要長大于0.1米,且每塊地磚的成本價為4元(成本價=材料費用+加工費用),則長應為多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】11·湖州)(本小題10分)

如圖,已知E、F分別是□ABCD的邊BCAD上的點,且BE=DF

求證:四邊形AECF是平行四邊形;

BC=10∠BAC=90°,且四邊形AECF是菱形,求BE的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線yx2+bx+3的對稱軸為直線x1.若關于x的一元二次方程x2+bx+3t0t為實數)在﹣2x3的范圍內有實數根,則t的取值范圍是(  )

A.12<t3B.12<t4C.12<t4D.12<t3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙上每個小正方形的邊長均為1個單位長度,點A、B都在格點上(兩條網格線的交點叫格點).

1)將線段AB向上平移兩個單位長度,點A的對應點為點A1,點B的對應點為點B1,請畫出平移后的線段A1B1;

2)將線段A1B1繞點A1按逆時針方向旋轉90°,點B1的對應點為點B2,請畫出旋轉后的線段A1B2;

3)連接AB2BB2,求△ABB2的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線yax2+bx+ca0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣3,0和(﹣20)之間,其部分圖象如圖,則下列結論:2ab04acb20點(x1,y1),(x2,y2)在拋物線上若x1x2,則y1y2;a+b+c0.正確結論的個數是( 。

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视