【題目】已知:如圖,點是以
為直徑的
上一點,直線
與過
點的切線相交于
,點
是
的中點,直線
交直線
于點
.
(1)求證:是
的切線;
(2)若,
,求
的半徑.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過
的三個頂點,其中點
,點
,
軸,點
是直線
下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點且與
軸平行的直線
與直線
、
分別交與點
、
,當四邊形
的面積最大時,求點
的坐標;
(3)當點為拋物線的頂點時,在直線
上是否存在點
,使得以
、
、
為頂點的三角形與
相似,若存在,直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數
的圖象與
軸交于點
,與反比例函數
在第一象限內的圖象交于點
,且點
的橫坐標為
.過點
作
軸交反比例函數
的圖象于點
,連接
.
(1)求反比例函數的表達式.
(2)求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC
(1)發現:如圖1,當點E在AB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MN與EC的位置關系是 ,MN與EC的數量關系是
(2)探究:若把(1)小題中的△AED繞點A旋轉一定角度,如圖2所示,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關系和數量關系仍然能成立嗎?若成立,請以逆時針旋轉45°得到的圖形(圖3)為例給予證明位置關系成立,以順時針旋轉45°得到的圖形(圖4)為例給予證明數量關系成立,若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小明同學設計的“過圓外一點作圓的切線”的尺規作圖的過程.
已知:如圖1,和
外的一點
.
求作:過點作
的切線.
作法:如圖2,
①連接;
②作線段的垂直平分線
,直線
交
于
;
③以點為圓心,
為半徑作圓,交
于點
和
;
④作直線和
.
則,
就是所求作的
的切線.
根據上述作圖過程,回答問題:
(1)用直尺和圓規,補全圖2中的圖形;
(2)完成下面的證明:
證明:連接,
,
∵由作圖可知是
的直徑,
∴(______)(填依據),
∴,
,
又∵和
是
的半徑,
∴,
就是
的切線(______)(填依據).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學藝術節期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數量進行了分析統計,制作了如下兩幅不完整的統計圖.
(1)王老師采取的調查方式是 (填“普查”或“抽樣調查”),王老師所調查的4個班征集到作品共 件,其中b班征集到作品 件,請把圖2補充完整;
(2)王老師所調查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?
(3)如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現在要在其中抽兩人去參加學?偨Y表彰座談會,請直接寫出恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線
與直線
都經過
、
兩點,該拋物線的頂點為C.
(1)求此拋物線和直線的解析式;
(2)設直線與該拋物線的對稱軸交于點E,在射線
上是否存在一點M,過M作x軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標;若不存在,請說明理由;
(3)設點P是直線下方拋物線上的一動點,當
面積最大時,求點P的坐標,并求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com