分析 根據正方形的性質可得AB=AD,∠BAE=∠D=90°,再根據同角的余角相等求出∠ABE=∠DAF,然后利用“角邊角”證明△ABE和△DAF全等,再根據全等三角形的證明即可.
解答 解:∵四邊形ABCD是正方形,
∴AB=BC,∠A=∠ABC=90°,
∴∠CBM+∠ABF=90°,
∵CE⊥BF,
∴∠ECB+∠MBC=90°,
∴∠ECB=∠ABF,
在△ABF和△BCE中,
$\left\{\begin{array}{l}{∠CBE=∠A}\\{AB=BC}\\{∠ABF=∠BCE}\end{array}\right.$,
∴△ABF≌△BCE(ASA),
∴BE=AF.
點評 本題考查了正方形的性質,全等三角形的判定與性質,主要利用了正方形的四條邊都相等,每一個角都是直角的性質,同角的余角相等的性質,利用三角形全等證明相等的邊是常用的方法之一,要熟練掌握并靈活運用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com