【題目】你會對多項式(x2+5x+2)(x2+5x+3)﹣12分解因式嗎?對結構較復雜的多項式,若把其中某些部分看成一個整體,用新字母代替(即換元),能使復雜的問題簡單化、明朗化.從換元的個數看,有一元代換、二元代換等.
對于(x2+5x+2)(x2+5x+3)﹣12.
解法一:設x2+5x=y,
則原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
解法二:設x2+5x+2=y,
則原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
解法三:設x2+2=m,5x=n,
則原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
按照上面介紹的方法對下列多項式分解因式:
(1)(x2+x﹣4)(x2+x+3)+10;
(2)(x+1)(x+2)(x+3)(x+6)+x2;
(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.
科目:初中數學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,點C落在點E處,BE與AD相交于點F,∠EDF=38°,則∠DBE的度數是( )
A. 25° B. 26° C. 27° D. 38°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線且AD=4,F是AD上的動點,E是AC邊上的動點,則CF+EF的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中, ⊙O的半徑是1,直線AB與x軸交于點P(x,0),且與x軸的正半軸夾角為45°,若直線AB與⊙O有公共點,則x值的范圍是( )
A. -1≤x≤1 B. -≤x≤
C. -
<x<
D. 0≤x≤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下面三行單項式:
,
,
,
,
,
,…;①
,
,
,
,
,
,…;②
,
,
,
,
,
,…;③
根據你發現的規律,解答下列問題:
(1)第①行的第8個單項式為 ;
(2)第②行的第9個單項式為 ;
(3)第③行的第n個單項式為 (用含n的式子表示);
(4)取每行的第8個單項式,令這三個單項式的和為A.
當時,求A的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:若線段上的一個點把這條線段分成1:2的兩條線段,則稱這個點是這條線段的三等分點.如圖1,點C在線段AB上,且AC:CB=1:2,則點C是線段AB的一個三等分點.
(1)如圖2,數軸上點A、B表示的數分別為-4、12,點D是線段AB的三等分點,求點D在數軸上所表示的數;
(2)在(1)的條件下,點P從點A出發以每秒1個單位長度的速度在數軸上向右運動;點Q從點B出發,在數軸上先向左運動,與點P重合后立刻改變方向與點P同向而行,且速度始終為每秒3個單位長度,點P、Q同時出發,設運動時間為t秒.
①用含t的式子表示線段AQ的長度;
②當點P是線段AQ的三等分點時,求點P在數軸上所表示的數.
圖1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從正五邊形的五個頂點中,任取四個頂點連成四邊形,對于事件M:“這個四邊形是等腰梯形” .下列判斷正確的是( )
A. 事件M是不可能事件 B. 事件M是必然事件
C. 事件M發生的概率為 D. 事件M發生的概率為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求兩個正整數的最大公約數是常見的數學問題,中國古代數學專著《九章算術》中便記載了求兩個正整數最大公約數的一種方法﹣﹣更相減損術,術曰:“可半者半之,不可半者,副置分母、子之數,以少成多,更相減損,求其等也.以等數約之”,意思是說,要求兩個正整數的最大公約數,先用較大的數減去較小的數,得到差,然后用減數與差中的較大數減去較小數,以此類推,當減數與差相等時,此時的差(或減數)即為這兩個正整數的最大公約數.
例如:求91與56的最大公約數
解:
請用以上方法解決下列問題:
(1)求108與45的最大公約數;
(2)求三個數78、104、143的最大公約數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com