【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,BC=5,點D、E分別在邊BC、AC上,且BD=CE,將△CDE沿DE翻折,點C落在點F處,且DF∥AB,則BD的長為_____.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數y=ax2+bx+c的解析式.
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?求P坐標及最大面積是多少?
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,直接寫出M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規則是:在一個不透明的袋子里裝有除數字外完全相同的4個小球,上面分別標有數字2,3,4,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數字和為偶數,則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;(2)若AE=5,OE=3,求線段CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標平面xOy內,點A(6,0)、C(﹣4,0),過點A作直線AB,交y軸的正半軸于點B,且AB=10,點P是直線AB上的一個動點.
(1)求點B的坐標和直線AB的表達式;
(2)若以A、P、C為頂點的三角形與△AOB相似,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下面材料,并回答所提出的問題.
三角形內角平分線定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:.
證明:過C作CE∥DA,交BA的延長線于E.
∴∠1=∠E,∠2=∠3.
∵AD是角平分線,
∴∠1=∠2.
∴∠3=∠E.
∴AC=AE.
又∵CE∥DA,
∴.……①
∴.
(1)上述證明過程中,步驟①處的理由是_____
(2)用三角形內角平分線定理解答:已知,△ABC中,AD是角平分線,AB=7cm,AC=4cm,BC=6cm,則BD的長為_____cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2(a+1)x+a2+3=0有兩個實數根x1,x2
(1)求實數a的取值范圍
(2)若等腰△ABC的三邊長分別為x1,x2,6,求△ABC的周長
(3)是否存在實數a,使x1,x2恰是一個邊長為的菱形的兩條對角線的長?若存在,求出這個菱形的面積;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com