精英家教網 > 初中數學 > 題目詳情

【題目】對x,y定義一種新運算T,規定:T(x,y)= (其中a、b均為非零常數),這里等式右邊是通常的四則運算,例如:T(0,1)= =b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1. ①求a,b的值;
②若關于m的不等式組 恰好有3個整數解,求實數p的取值范圍;
(2)若T(x,y)=T(y,x)對任意實數x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應滿足怎樣的關系式?

【答案】
(1)解:①根據題意得:T(1,﹣1)= =﹣2,即a﹣b=﹣2;

T=(4,2)= =1,即2a+b=5,

解得:a=1,b=3;

②根據題意得:

由①得:m≥﹣ ;

由②得:m< ,

∴不等式組的解集為﹣ ≤m< ,

∵不等式組恰好有3個整數解,即m=0,1,2,

∴2< ≤3,

解得:﹣2≤p<﹣ ;


(2)解:由T(x,y)=T(y,x),得到 =

整理得:(x2﹣y2)(2b﹣a)=0,

∵T(x,y)=T(y,x)對任意實數x,y都成立,

∴2b﹣a=0,即a=2b.


【解析】(1)①已知兩對值代入T中計算求出a與b的值;②根據題中新定義化簡已知不等式,根據不等式組恰好有3個整數解,求出p的范圍即可;(2)由T(x,y)=T(y,x)列出關系式,整理后即可確定出a與b的關系式.
【考點精析】關于本題考查的分式的混合運算和解二元一次方程組,需要了解運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內的運算,從里向外{[(?)]};二元一次方程組:①代入消元法;②加減消元法才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當銳角∠AOC的大小發生改變時,∠MON的大小是否發生改變?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一只不透明的袋子中裝有1個紅球、1個黃球和1個白球,這些球除顏色外都相同
(1)攪勻后從袋子中任意摸出1個球,求摸到紅球的概率;
(2)攪勻后從袋子中任意摸出1個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)已知AF=4,CF=2.在(2)條件下,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】
(1)計算:(3.14﹣π)0+(﹣ 2﹣2sin30°;
(2)化簡: ÷

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數式表示,n為正整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=36°,

(1)作出AB邊的垂直平分線DE,交AC于點D,交AB于點E,連接BD;

(2)下列結論正確的是:

① BD平分∠ABC;② AD=BD=BC;③ △BDC的周長等于AB+BC; ④ D點是AC中點;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點E為邊BC的中點,點P在對角線BD上移動,則PE+PC的最小值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=a(x2﹣2mx﹣3m2)(其中a,m是常數,且a>0,m>0)的圖象與x軸分別交于點A、B(點A位于點B的左側),與y軸交于C(0,﹣3),點D在二次函數的圖象上,CD∥AB,連接AD,過點A作射線AE交二次函數的圖象于點E,AB平分∠DAE.

(1)用含m的代數式表示a;
(2)求證: 為定值;
(3)設該二次函數圖象的頂點為F,探索:在x軸的負半軸上是否存在點G,連接GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數式表示該點的橫坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视