【題目】如圖,四邊形 ABCD 中,AE,DF 分別是∠BAD,∠ADC 的平分線,且 AE⊥DF 于點 O . 延長 DF 交 AB 的延長線于點 M .
(1)求證:AB∥DC ;
(2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數.
【答案】(1)見詳解;(2)∠C=120°,∠DFE=24°
【解析】
(1)根據角平分線的定義可得∠DAB=2∠EAB,∠ADC=2∠ADF,根據垂直的定義可得∠AOD=90°,即∠DAE+∠ADF=90°,從而可得∠BAD+∠ADC=2(∠DAE+∠ADF)=180°,即可得證;
(2)由AB∥DC可得∠C=∠MBC,從而得出∠ADC=72°,再根據角平分線的定義以及三角形內角和公式解答即可.
解:(1)證明:∵AE,DF分別是∠BAD,∠ADC的平分線,
∴∠DAB=2∠EAB,∠ADC=2∠ADF,
∵AE⊥DF,
∴∠AOD=90°.
∴∠DAE+∠ADF=90°,
∴∠BAD+∠ADC=2(∠DAE+∠ADF)=180°,
∴AB∥DC;
(2)∵AB∥DC,
∴∠C=∠MBC.
∵∠MBC=120°,
∴∠C=120°,
∵∠BAD=108°,
∴∠ADC=72°,
∴,
∴∠DFE=180°﹣(∠C+∠CDF)=24°.
科目:初中數學 來源: 題型:
【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點D在線段AB上運動(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ,給出下列結論:
①CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當點D在AB的中點時,△PDQ是等邊三角形,其中正確結論的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某教研機構為了解在校初中生閱讀數學教科書的現狀,隨機抽取某校部分初中學生進行了調查.依據相關數據繪制成如圖所示的不完整的統計圖表,請根據圖表中的信息解答下列問題:
某校初中生閱讀數學教科書情況統計圖表
類別 | 人數 | 占總人數比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補全統計圖.
(2)若該校共有初中生2 300名,請估計該!安恢匾曢喿x數學教科書”的初中生人數.
(3)①根據上面的統計結果,談談你對該校初中生閱讀數學教科書的現狀的看法及建議;
②如果要了解全省初中生閱讀數學教科書的情況,你認為應該如何進行抽樣?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,∠B=∠C,∠ADB=∠DEC,AB=DC.
(1)求證:△ADE 為等腰三角形.
(2)若∠B=60°,求證:△ADE 為等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1, △ABC中,CD⊥AB于D,且BD: AD:CD=2:3:4,
(1)試說明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發以每秒1cm的速度沿線段BA向點A運動,同時動點N從點A出發以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止.設點M運動的時間為t(秒),若△DMN的邊與BC平行,求t的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一個三角形的第一條邊長為2a+5b,第二條邊比第一條邊長3a﹣2b,第三條邊比第二條邊短3a.
(1)則第二邊的邊長為 ,第三邊的邊長為 ;
(2)用含a,b的式子表示這個三角形的周長,并化簡;
(3)若a,b滿足|a﹣5|+(b﹣3)2=0,求出這個三角形的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究與發現:
如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規.我們不妨把這樣圖形叫做“規形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數學知識呢?下面就請你發揮你的聰明才智,解決以下問題:
(1)觀察“規形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數;
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com