【題目】2017年歌舞劇《白毛女》將在廣州歌舞劇院公演,對團體購買門票實行優惠,決定在原定票價基礎上每張降價元,這樣按原定票價需花費
元購買的門票現在只需花費了
元就可以買到了.
(1)求每張門票的原定票價;
(2)根據實際情況,活動組織單位決定對于個人購票也采取優惠政策,原定票價經過連續兩次降價后降為元,求平均每次降價的百分率.
科目:初中數學 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,在地面上,支架
是底邊為
的等腰直角三角形,擺動臂
可繞點
旋轉,擺動臂
可繞點
旋轉,
,
.
(1)在旋轉過程中,當為同一直角三角形的頂點時,
的長為______________.
(2)若擺動臂順時針旋轉90°,點
的位置由
外的點
轉到其內的點
處,連結
,如圖2,此時
,
,
的長為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在寬度為20 m,長為32 m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪,要使草坪的面積為540 m2 , 求道路的寬.如果設小路寬為x m,根據題意,所列方程正確的是( )
A.(20+x)(32+x)=540
B.(20﹣x)(32﹣x)=100
C.(20﹣x)(32﹣x)=540
D.(20-2x)(32﹣2x)=540
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線
交于點
,
∥
,且FG=EF.
(1)求證:四邊形是菱形;
(2)聯結AE,又知AC⊥ED,求證: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知D,E分別為△ABC的邊AB,BC上兩點,點A,C,E在⊙D上,點B,D在⊙E上.F為上一點,連接FE并延長交AC的延長線于點N,交AB于點M.
(1)若∠EBD為α,請將∠CAD用含α的代數式表示;
(2)若EM=MB,請說明當∠CAD為多少度時,直線EF為⊙D的切線;
(3)在(2)的條件下,若AD=,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與x軸,y軸分別交于點A(2,0),點B(0,2),動點D以1個單位長度/秒的速度從點A出發向x軸負半軸運動,同時動點E以
個單位長度/秒的速度從點B出發向y軸負半軸運動,設運動時間為t秒,以點A為頂點的拋物線經過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F
(1)求∠OAB度數;
(2)當t為何值時,四邊形ADEF為菱形,請求出此時二次函數解析式;
(3)是否存在實數t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中(如圖),已知拋物線
經過點
和
,與y軸相交于點C,頂點為P.
(1)求這條拋物線的表達式和頂點P的坐標;
(2)點E在拋物線的對稱軸上,且,求點E的坐標;
(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com