精英家教網 > 初中數學 > 題目詳情
10.解下列分式方程.
(1)$\frac{2}{2x+1}+\frac{1}{2x+1}$=1
(2)$\frac{2}{x-1}+\frac{1}{1-x}=\frac{1}{2}$.

分析 兩分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.

解答 解:(1)去分母得:2+1=2x+1,
移項合并得:2x=2,
解得:x=1,
經檢驗x=1是分式方程的解;
(2)去分母得:4-2=x-1,
解得:x=3,
經檢驗x=3是分式方程的解.

點評 此題考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.解分式方程一定注意要驗根.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

14.已知一次函數圖象如圖,則它的表達式為y=2x-2.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

1.如圖,O為直線AB上一點,OD平分∠AOC,OE平分∠COB,
①問:DO與OE有何關系?并說明你的理由.
②圖中有幾對互余的角?試寫出所有你認為互余的角.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

18.已知拋物線G1:y=ax2+bx+c的頂點為(2,-3),且經過點(4,1).
(1)求拋物線G1的解析式;
(2)將拋物線G1先向左平移3個單位,再向下平移1個單位后得到拋物線G2,且拋物線G2與x軸的負半軸相交于A點,求A點的坐標;
(3)如果直線m的解析式為${y_{\;}}=\frac{1}{2}x+3$,點B是(2)中拋物線G2上的一個點,且在對稱軸右側部分(含頂點)上運動,直線n過點A和點B.問:是否存在點B,使直線m、n、x軸圍成的三角形和直線m、n、y軸圍成的三角形相似?若存在,求出點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.已知正方形ABCD中,點E在BC上,連接AE,過點B作BF⊥AE于點G,交CD于點F.

(1)如圖1,連接AF,若AB=4,BE=1,求AF的長;
(2)如圖2,連接BD,交AE于點N,連接AC,分別交BD、BF于點O、M,連接GO,求證:GO平分∠AGF;
(3)如圖3,在第(2)問的條件下,連接CG,若CG⊥GO,求證:AG=$\sqrt{2}$CG.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

15.“囧”像一個人臉郁悶的神情.如圖,邊長為a的正方形紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分),設剪去的兩個小直角三角形的兩直角邊長分別為x、y,剪去的小長方形長和寬也分別為x,y.
(1)用式子表示“囧”的面積S;(用含a、x、y的式子表示)
(2)當a=7,x=π,y=2時,求S(π取3.14)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

2.已知,在下列各圖中,點O為直線AB上一點,∠AOC=60°,直角三角板的直角頂點放在點處.

(1)如圖1,三角板一邊OM在射線OB上,另一邊ON在直線AB的下方,則∠BOC的度數為120°,∠CON的度數為150°;
(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線OE上,另一邊ON在直線AB的下方,此時∠BON的度數為30°;
(3)請從下列(A),(B)兩題中任選一題作答.
我選擇:A(或B).
(A)在圖2中,延長線段NO得到射線OD,如圖3,則∠AOD的度數為30°;∠DOC與∠BON的數量關系是∠DOC=∠BON(填“>”、“=”或“<”);
(B)如圖4,MN⊥AB,ON在∠AOC的內部,若另一邊OM在直線AB的下方,則∠COM+∠AON的度數為150°;∠AOM-∠CON的度數為30°.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

19.如圖,OE為∠AOD的平分線,∠COD=$\frac{1}{4}$∠EOC,∠COD=15°,求∠AOD的大。
解:∵∠COD=$\frac{1}{4}$∠EOC,∠COD=15°,
∴∠EOC=4∠∠COD=60°,
∴∠EOD=∠EOC-∠COD=45°,
∵OE為∠AOD的平分線,
∴∠AOD=2∠EOD=90°.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

20.如圖,在△ACE中,CA=CE,∠CAE=30°,∠CAE=30°,⊙O經過點C,且圓的直徑AB在線段AE上.
(1)證明:CE是⊙O的切線;
(2)設點D是線段AC上任意一點(不含端點),連接OD,當AB=8時,求$\frac{1}{2}$CD+OD的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视