【題目】知識背景:當a>0且x>0時,因為≥0,所以
,從而
≥
(當x=
時取等號).
設函數=
(
>0,x>0),由上述結論可知,當x=
時,該函數有最小值為
.
應用舉例:已知函數=x(x>0)與函數
=
(x>0),則當x=
=2時,
=
有最小值為
=4.
解決問題:
(1)已知函數=
(x>-3)與函數
=
(x>-3),當x為何值時,
有最小值?最小值是多少?
(2)已知某設備租賃使用成本包含以下三部分:一是設備的安裝調試費用,共490元;二是設備的租賃使用費用,每天200元;三是設備的折舊費用,它與使用天數的平方成正比,比例系數為0.001.若設該設備的租賃使用天數為x天,則當x取何值時,該設備平均每天的租賃使用成本最低?最低是多少元?
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+4與兩坐標軸交于P,Q兩點,在線段PQ上有一動點A(點A不與P,Q重合),過點A分別作兩坐標軸的垂線,垂足為B,C,則下列說法不正確的是( 。
A.點A的坐標為(2,2)時,四邊形OBAC為正方形
B.在整個運動過程中,四邊形OBAC的周長保持不變
C.四邊形OBAC面積的最大值為4
D.當四邊形OBAC的面積為3時,點A的坐標為(1,3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里裝有顏色不同的黑、白兩種球共60個,它們除顏色不同外,其余都相同,王穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中攪勻,經過大量重復上述摸球的過程,發現摸到白球的頻率定于0.25.
(1)請估計摸到白球的概率將會接近________;
(2)計算盒子里白、黑兩種顏色的球各有多少個?
(3)如果要使摸到白球的概率為,需要往盒子里再放入多少個白球?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿與地面仍保持垂直的關系,而折斷部分
與未折斷樹桿
形成
的夾角.樹桿
旁有一座與地面垂直的鐵塔
,測得
米,塔高
米.在某一時刻的太陽照射下,未折斷樹桿
落在地面的影子
長為
米,且點
、
、
、
在同一條直線上,點
、
、
也在同一條直線上.求這棵大樹沒有折斷前的高度.(結果精確到
,參考數據:
,
,
).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節目文化品位高,內容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統計后分為“優秀”、“良好”、“一般”、“較差”四個等級,并根據成績繪制成如下兩幅不完整的統計圖,請結合統計圖中的信息,回答下列問題:
(1)扇形統計圖中“優秀”所對應的扇形的圓心角為 度,并將條形統計圖補充完整.
(2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(發現問題)愛好數學的小明在做作業時碰到這樣的一道題目:
如圖1,點O為坐標原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值.
(解決問題)小明經過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側作等邊三角形BOE,連接AE.
(1)請你找出圖中與OC相等的線段,并說明理由;
(2)請直接寫出線段OC的最大值.
(遷移拓展)
(3)如圖2,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請求出AC的最值,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】萬州區中小學社會活動實踐基地開展了人與社會、人與自然、人與自我的綜合實踐活動,其中高空項目能培養學生不怕困難,不畏艱險的精神.在高空項目中有以下四個特色實踐活動:“A.合力制勝,B.空中斷橋,C.絕壁飛胎,D.天羅地網”.為了解學生最喜愛哪項綜合實踐活動,隨機抽取部分學生進行問卷調查(每位學生只能選擇一項),將調查結果繪制成下面兩幅不完整的統計圖,請結合圖中提供的信息回答下列問題:
(1)本次一共調查了 名學生,并補全條形統計圖;
(2)現有最喜愛A,B,C,D活動項目的學生各一人,學校要從這四人中隨機選取兩人交流活動體會,請用列表或畫樹狀圖的方法求出恰好選取最喜愛C和D項目的兩位學生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列關于二次函數y=-x2-2x+3說法正確的是( 。
A. 當時,函數最大值4
B. 當時,函數最大值2
C. 將其圖象向上平移3個單位后,圖象經過原點
D. 將其圖象向左平移3個單位后,圖象經過原點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+bx+c=0.
(1)若b=2m﹣1,m+c=﹣6,判斷方程根的情況;
(2)若方程有兩個相等的非零實數根,且b2﹣c2﹣4=0,求此時方程的根.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com