【題目】“半日走遍江淮大地,安徽風景盡在徽園”,位于省會合肥的徽園景點某年三月共接待游客萬人,四月比三月旅游人數增加了
,五月比四月游客人數增加了
,已知三月至五月徽園的游客人數平均月增長率為
,則可列方程為( )
A.B.
C.D.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(0,1)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.
(1)求拋物線的函數表達式;
(2)如圖1,若點D在直線AB上方的拋物線上,求△DAB的面積最大時點D的坐標;
(3)如圖2,若點D在對稱軸左側的拋物線上,且點E(1,t)是射線CF上一點,當以C、B、D為頂點的三角形與△CAE相似時,求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,點E是邊BC的中點.
(1)、求證:BC 2=BDBA;
(2)、判斷DE與⊙O位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(模型介紹)
古希臘有一個著名的“將軍飲馬問題”,大致內容如下:古希臘一位將軍,每天都要巡查河岸同側的兩個軍營.他總是先去
營,再到河邊飲馬,之后,再巡查
營.如圖①,他時常想,怎么走才能使每天走的路程之和最短呢?大數學家海倫曾用軸對稱的方法巧妙地解決了這個問題.如圖②,作點
關于直線
的對稱點
,連結
與直線
交于點
,連接
,則
的和最小.請你在下列的閱讀、理解、應用的過程中,完成解答.理由:如圖③,在直線
上另取任一點
,連結
,
,
,∵直線
是點
,
的對稱軸,點
,
在
上,
(1)∴__________,
_________,∴
____________.在
中,∵
,∴
,即
最。
(歸納總結)
在解決上述問題的過程中,我們利用軸對稱變換,把點在直線同側的問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即轉化為“三角形兩邊之和大于第三邊”的問題加以解決(其中點
為
與
的交點,即
,
,
三點共線).由此,可拓展為“求定直線上一動點與直線同側兩定點的距離和的最小值”問題的數學模型.
(模型應用)
(2)如圖④,正方形的邊長為4,
為
的中點,
是
上一動點.求
的最小值.
解析:解決這個問題,可借助上面的模型,由正方形對稱性可知,點與
關于直線
對稱,連結
交
于點
,則
的最小值就是線段
的長度,則
的最小值是__________.
(3)如圖⑤,圓柱形玻璃杯,高為,底面周長為
,在杯內離杯底
的點
處有一滴蜂蜜,此時一只螞蟻正好在外壁,離杯上沿
與蜂蜜相對的點
處,則螞蟻到達蜂的最短路程為_________
.
(4)如圖⑥,在邊長為2的菱形中,
,將
沿射線
的方向平移,得到
,分別連接
,
,
,則
的最小值為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE為1.05米,求籃板下沿E點與地面的距離.(結果精確到0.1m,參考數據:sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果連鎖店銷售某種熱帶水果,其進價為20元/千克.銷售一段時間后發現:該水果的日銷量(千克)與售價
(元/千克)的函數關系如圖所示:
(1)求關于
的函數解析式;
(2)當售價為多少元/千克時,當日銷售利潤最大,最大利潤為多少元?
(3)由于某種原因,該水果進價提高了元/千克(
),物價局規定該水果的售價不得超過40元/千克,該連鎖店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數關系.若日銷售最大利潤是
元,請直接寫出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙中,AB是直徑,BC是弦,BC=BD,連接CD交⊙
于點E,∠BCD=∠DBE.
(1)求證:BD是⊙的切線.
(2)過點E作EF⊥AB于F,交BC于G,已知DE=,EG=3,求BG的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com