精英家教網 > 初中數學 > 題目詳情

【題目】二次函數yax2+bx+c的圖象如圖所示,以下結論:①abc0;②4acb2;③2a+b0;④其頂點坐標為(,﹣2);⑤當x時,yx的增大而減小;⑥a+b+c0中,其中正確的有( )

A. 2B. 3C. 4D. 5

【答案】C

【解析】

根據二次函數的性質求解即可.

由圖像可知,a0,c0

由對稱軸可知,-0

b0

abc0

正確

由圖像可知,△>0

4ac

正確

∵拋物線與x軸的交點為(-1,0),(2,0

∴對稱軸x=

-1

2a+b0正確

正確;

拋物線過點(-1,0),(2,0)(0-2

求出拋物線方程為y=x2-x-2

由圖像可知頂點坐標為(,-)

不正確;

由圖像可知當x時,yx的增大而減小

正確

由圖像可知,當x=1,y0

a+b+c0

錯誤

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數量關系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數量關系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質得:AB=BC,則∠ABE=∠CBE,結合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1ADBC,BEAC

∴∠ADB=AEF=90°,

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC;

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM,

AE=EC

BEAC,

AB=BC,

∴∠ABE=CBE

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM

∴△BDF≌△ADM,

∴∠DBF=MAD,

∵∠DBA=BAD=45°,

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE,

∴∠ANE=NAE=45°

AE=EN,

EN=AC

型】解答
束】
17

【題目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的兩根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+ca≠0)的圖象如下圖所示,且關于x的一元二次方程ax2+bx+c-m=0沒有實數根,有下列結論:①b2-4ac>0;②abc<0;③m>2.其中,正確結論的個數是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:在直角坐標系中,A(﹣24B(﹣4,2);A1、B1AB關于y軸的對稱點;

1)請在圖中畫出AB關于原點O的對稱點A2,B2(保留痕跡,不寫作法);并直接寫出A1、A2、B1、B2的坐標.

2)試問:在x軸上是否存在一點C,使A1B1C的周長最小,若存在求C點的坐標,若不存在說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABC為等邊三角形,點D、E分別在直線ABBC上,且AD=BE.

1)如圖1,若點D、E分別是AB、CB邊上的點,連接AE、CD交于點F,過點EAEG=60°,使EG=AE,連接GD,則AFD= (填度數);

2)在(1)的條件下,猜想DGCE存在什么關系,并證明;

3)如圖2,若點DE分別是BA、CB延長線上的點,(2)中結論是否仍然成立?請給出判斷并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別,某校建立了一個身份識別系繞,圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數字從左到右依次記為a,bc,d,那么可以轉換為該生所在班級序號,其序號為a×23+b×22+c×21+d×20,如圖2第一行數字從左到右依次為0,1,0,1,序號為0×23+1×22+0×21+1×205,表示該生為5班學生,那么表示7班學生的識別圖案是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】張老師打算在小明和小白兩位同學之間選一位同學參加數學競賽,他收集了小明、小白近期10次數學考試成績,并繪制了折線統計圖(如圖所示)

項目

眾數

中位數

平均數

方差

最高分

小明

85

85

小白

70100

85

100

(1)根據折線統計圖,張老師繪制了不完整的統計表,請你補充完整統計表;

(2)你認為張老師會選擇哪位同學參加比賽?并說明你的理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線的頂點為D(-1,2),與x軸的一個交點A在點(-3,0)(-2,0)之間,其部分圖象如圖,則以下結論:①;②當x>-l時,yx增大而減;③a+b+c<0;④若方程沒有實數根,則m>2. 其中正確的結論有________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,,,點Bx軸上,且

求點B的坐標;

的面積;

y軸上是否存在P,使以AB、P三點為頂點的三角形的面積為10?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视