精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,在ABC中,ACB=90°EAB的中點,連接CE,過點EEDBC于點D,在DE的延長線上取一點F,使AFCE,求證四邊形ACEF是平行四邊形.

【答案】證明:如圖D5—2,∵∠ACB=90°,點EAB的中點,

∴CE=AE=EB……2

∵AF=CE∴AF=CE=AE=EB……3

∵ED⊥BC,EB=EC∴∠1=∠2……5

∵∠2=∠3,∴∠1=∠3

∵AE=AF∴∠3=∠F,∴∠1=∠F……8

∴CE∥AF……9

四邊形ACEF是平行四邊形. ……l0

【解析】

試題要證明四邊形ACEF是平行四邊形,需求證CEAF,由已知易得BEC,△AEF是等腰三角形,則∠1=∠2,∠3=∠F,又∠2=∠3,得到∠1=∠FCEAF,由此即可得到結論

試題解析:證明:EAB中點,AE=EB∵∠ACB=90°,∴CE=AE=EBAF=CE,∴AF=AE,∴∠3=∠FEB=EC,EDBC,∴∠1=∠2(三線合一)∵∠2=∠3,∴∠1=∠F,∴CEAF,∴四邊形ACEF是平行四邊形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,∠ACE=AEC
1)若CE平分∠ACD,求證:ABCD
2)若ABCD,求證:CE平分∠ACD.請在(1)、(2)中選擇一個進行證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,E,F分別為平行四邊形ABCDADBC的中點,GHBD上,且 BGDH求證四邊形EGFH是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點上,點上,

試說明:,將過程補充完整.

解:∵___________

___________

___________

_____________________________

(_____________)

又∵___________

___________

___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】本學期初,我市教育部門對某中學從學生的品德、身心、學習、創新、國際、審美、信息、生活八個方面進行了綜合評價,評價小組從八年級學生中選取部分學生針對“信息素養”進行測試,并將測試結果繪制成如下統計圖(如圖).根據圖中信息,解答下列問題:

(1)本次選取參加測試的學生人數是 ___

(2)學生“信息素養”得分的中位數落在 _____;

3)若把每組中各個分數用這組數據的中間值代替(如30﹣40分的中間值為35分),則參加測試的學

生的平均分為多少分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線y= 與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,拋物線的頂點為點D,過點B作BC的垂線,交對稱軸于點E.

(1)求證:點E與點D關于x軸對稱;
(2)點P為第四象限內的拋物線上的一動點,當△PAE的面積最大時,在對稱軸上找一點M,在y軸上找一點N,使得OM+MN+NP最小,求此時點M的坐標及OM+MN+NP的最小值;
(3)如圖2,平移拋物線,使拋物線的頂點D在射線AD上移動,點D平移后的對應點為D′,點A的對應點A′,設拋物線的對稱軸與x軸交于點F,將△FBC沿BC翻折,使點F落在點F′處,在平面內找一點G,若以F′、G、D′、A′為頂點的四邊形為菱形,求平移的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把一個長為、寬為的長方形(),沿圖1中虛線用剪刀分成四塊相同的小長方形,并將塊小長方形彼此不重疊拼成一個正方形(如圖2

1)圖2中大正方形的邊長為 ;小正方形(陰影部分)的邊長為 .(用含的代數式表示).

2)利用圖2存在的面積關系,直接寫出下列三個代數式之間的等量關系:

3)如圖3,已知長方形的周長為,面積為,試求該長方形長與寬的差.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊AB=3,BC=4,PAD上任一點,PE⊥AC于點E,PF⊥BD于點F.PE+PF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】不等式組 的解集在數軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视