【題目】如圖,在中,
,
,
,點O是AB的三等分點,半圓O與AC相切,M,N分別是BC與半圓弧上的動點,則MN的最小值和最大值之和是( )
A. 5B. 6C. 7D. 8
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xoy中(如圖),已知一次函數的圖像平行于直線,且經過點A(2,3),與x軸交于點B。
(1)求這個一次函數的解析式;
(2)設點C在y軸上,當AC=BC時,求點C的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點的坐標為
,且
,拋物線
圖象經過
三點.
(1)求兩點的坐標;
(2)求拋物線的解析式;
(3)若點是直線
下方的拋物線上的一個動點,作
于點
,當
的值最大時,求此時點
的坐標及
的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長都為1的小正方形組成的網格中,點,
,
均為格點,點
,
分別為線段
,
上的動點,且滿足
.
(1)線段的長度等于__________;
(2)當線段取得最小值時,請借助無刻度直尺在給定的網格中畫出線段
和
,并簡要說明你是怎么畫出點Q,P的:_______________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經點
,與
軸相交于點
.
(1)求拋物線的解析式;
(2)定義:平面上的任一點到二次函數圖象上與它橫坐標相同的點的距離,稱為點到二次函數圖象的垂直距離.如:點到二次函數圖象的垂直距離是線段
的長.已知點
為拋物線對稱軸上的一點,且在
軸上方,點
為平面內一點,當以
為頂點的四邊形是邊長為4的菱形時,請求出點
到二次函數圖象的垂直距離.
(3)在(2)中,當點到二次函數圖象的垂直距離最小時,在
為頂點的菱形內部是否存在點
,使得
之和最小,若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湖南省作為全國第三批啟動高考綜合改革的省市之一,從2018年秋季入學的高中一年級學生開始實施高考綜合改革.深化高考綜合改革,承載著廣大考生的美好期盼,事關千家萬戶的切身利益,社會關注度高.為了了解我市某小區居民對此政策的關注程度,某數學興趣小組隨機采訪了該小區部分居民,根據采訪情況制做了如統計圖表:
關注程度 | 頻數 | 頻率 |
A.高度關注 | m | 0.4 |
B.一般關注 | 100 | 0.5 |
C.沒有關注 | 20 | n |
(1)根據上述統計圖表,可得此次采訪的人數為 ,m= ,n= .
(2)根據以上信息補全圖中的條形統計圖.
(3)請估計在該小區1500名居民中,高度關注新高考政策的約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AD、BD分別是△ABC的內角∠BAC、∠ABC的平分線,過點A作AE上AD,交BD的延長線于點E.
(1)求證:∠E=∠C;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數,并直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=(x<0)的圖象經過OABC的頂點B,點A在x軸上,AC⊥x軸交反比例函數圖象于點D,BE⊥x軸于點E,則BE:AD=( 。
A. 1:2B. 1:C. 1:3D. 1:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com