【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交弧AC于點F,交過點C的切線于點D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當F是弧AC的中點時,判斷以A,O,C,F為頂點的四邊形是什么特殊四邊形?說明理由.
【答案】(1)證明見解析;(2)以A,O,C,F為頂點的四邊形是菱形,理由見解析.
【解析】分析:(1)連接OC,根據切線的性質和PE⊥OE以及∠OAC=∠ACO,得∠APE=∠DPC,然后結合對頂角的性質可證得結論;
(2)由易得△OBC為等邊三角形,可得
由F是
的中點,易得△AOF與△COF均為等邊三角形,可得AF=AO=OC=CF,易得四邊形OACF為菱形.
詳解:(1)證明:連接OC,
∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,
∴∠APE=∠PCD,
∵∠APE=∠DPC,
∴∠DPC=∠PCD,
∴DC=DP;
(2)以A,O,C,F為頂點的四邊形是菱形;
∵
∴△OBC為等邊三角形,
∴
連接OF,AF,
∵F是的中點,
∴
∴△AOF與△COF均為等邊三角形,
∴AF=AO=OC=CF,
∴四邊形OACF為菱形.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,E是BD上一點,AE的延長線交CD于F,交BC的延長線于G,M是FG的中點.
(1)求證:① ∠1=∠2;② EC⊥MC.
(2)試問當∠1等于多少度時,△ECG為等腰三角形?請說明理由.
【答案】(1)①證明見解析;②證明見解析;(2)當∠1=30°時,△ECG為等腰三角形. 理由見解析.
【解析】試題分析:(1)①根據正方形的對角線平分一組對角可得然后利用邊角邊定理證明
≌
再根據全等三角形對應角相等即可證明;
②根據兩直線平行,內錯角相等可得 再根據直角三角形斜邊上的中線等于斜邊的一半可得
然后據等邊對等角的性質得到
,所以
然后根據
即可證明
從而得證;
(2)根據(1)的結論,結合等腰三角形兩底角相等 然后利用三角形的內角和定理列式進行計算即可求解.
試題解析:(1)證明:①∵四邊形ABCD是正方形,
∴∠ADE=∠CDE,AD=CD,
在△ADE與△CDE,
∴△ADE≌△CDE(SAS),
∴∠1=∠2,
②∵AD∥BG(正方形的對邊平行),
∴∠1=∠G,
∵M是FG的中點,
∴MC=MG=MF,
∴∠G=∠MCG,
又∵∠1=∠2,
∴∠2=∠MCG,
∵
∴
∴EC⊥MC;
(2)當∠1=30°時, 為等腰三角形. 理由如下:
∵要使
為等腰三角形,必有
∴
∵
∴
∴
∴∠1=30°.
【題型】解答題
【結束】
24
【題目】如圖,已知拋物線經過原點O和點A,點B(2,3)是該拋物線對稱軸上一點,過點B作BC∥x軸交拋物線于點C,連結BO、CA,若四邊形OACB是平行四邊形.
(1)① 直接寫出A、C兩點的坐標;② 求這條拋物線的函數關系式;
(2)設該拋物線的頂點為M,試在線段AC上找出這樣的點P,使得△PBM是以BM為底邊的等腰三角形并求出此時點P的坐標;
(3)經過點M的直線把□ OACB的面積分為1:3兩部分,求這條直線的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“幸福是奮斗出來的”,在數軸上,若C到A的距離剛好是3,則C點叫做A的“幸福點”,若C到A、B的距離之和為6,則C叫做A、B的“幸福中心”
(1)如圖1,點A表示的數為﹣1,則A的幸福點C所表示的數應該是 ;
(2)如圖2,M、N為數軸上兩點,點M所表示的數為4,點N所表示的數為﹣2,點C就是M、N的幸福中心,則C所表示的數可以是 (填一個即可);
(3)如圖3,A、B、P為數軸上三點,點A所表示的數為﹣1,點B所表示的數為4,點P所表示的數為8,現有一只電子螞蟻從點P出發,以2個單位每秒的速度向左運動,當經過多少秒時,電子螞蟻是A和B的幸福中心?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與反比例函數
的圖象交于A(-2,-1)、B(1,n)兩點。
(1)利用圖中條件求反比例函數和一次函數的解析式;
(2)根據圖象寫出使一次函數的值大于反比例函數的值的的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環進行下去,如果共剪次,則可剪出 個正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,線段AB上順次有三個點C,D,E,把線段AB分為了2:3:4:5四部分,且AB=28,
(1)求線段AE的長;
(2)若M,N分別是DE,EB的中點,求線段MN的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地.甲、乙兩人同時出發,甲騎電動車從A地勻速前往B地,行走到一半路程時出現故障后停車維修,修好車后以原速繼續行駛到B地;乙騎摩托車從B地勻速前往A地,到達A地后立即按原路原速返回,結果兩人同時到B地.甲、乙兩人與B地的距離y(km)與乙行駛時間x(h)之間的函數圖象如圖所示.
(1)求甲修車前的速度.
(2)求甲、乙第一次相遇的時間.
(3)若兩人之間的距離不超過10km時,能夠用無線對講機保持聯系,請直接寫出乙在行進中能用無線對講機與甲保持聯系的x取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.
(1)求a,b的值;
(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PM∥OB交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,過點P作PF⊥MC于點F,設PF的長為t,MN的長為d,求d與t之間的函數關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當S△ACN=S△PMN時,連接ON,點Q在線段BP上,過點Q作QR∥MN交ON于點R,連接MQ、BR,當∠MQR﹣∠BRN=45°時,求點R的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com