精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點PPEAB,垂足為E,射線EP交弧AC于點F,交過點C的切線于點D.

(1)求證:DC=DP;

(2)若∠CAB=30°,當F是弧AC的中點時,判斷以A,O,C,F為頂點的四邊形是什么特殊四邊形?說明理由.

【答案】(1)證明見解析;(2)以A,O,C,F為頂點的四邊形是菱形理由見解析.

【解析】分析:(1)連接OC,根據切線的性質和PEOE以及∠OAC=ACO,得∠APE=DPC,然后結合對頂角的性質可證得結論;
(2)由易得△OBC為等邊三角形,可得F的中點,易得△AOF與△COF均為等邊三角形,可得AF=AO=OC=CF,易得四邊形OACF為菱形.

詳解:(1)證明:連接OC,

∵∠OAC=ACO,PEOEOCCD,

∴∠APE=PCD

∵∠APE=DPC,

∴∠DPC=PCD

DC=DP

(2)A,O,C,F為頂點的四邊形是菱形;

∴△OBC為等邊三角形,

連接OF,AF,

F的中點,

∴△AOF與△COF均為等邊三角形,

AF=AO=OC=CF,

∴四邊形OACF為菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,EBD上一點,AE的延長線交CDF,交BC的延長線于G,MFG的中點.

1)求證:① 1=2 ECMC.

2)試問當∠1等于多少度時,ECG為等腰三角形?請說明理由.

【答案】1①證明見解析;②證明見解析;(2)當∠1=30°時,ECG為等腰三角形. 理由見解析.

【解析】試題分析:1①根據正方形的對角線平分一組對角可得然后利用邊角邊定理證明再根據全等三角形對應角相等即可證明;
②根據兩直線平行,內錯角相等可得 再根據直角三角形斜邊上的中線等于斜邊的一半可得然后據等邊對等角的性質得到,所以 然后根據即可證明 從而得證;
2)根據(1)的結論,結合等腰三角形兩底角相等 然后利用三角形的內角和定理列式進行計算即可求解.

試題解析:(1)證明:①∵四邊形ABCD是正方形,

∴∠ADE=CDE,AD=CD,

在△ADE與△CDE,

∴△ADE≌△CDE(SAS),

∴∠1=2

②∵ADBG(正方形的對邊平行),

∴∠1=G,

MFG的中點,

MC=MG=MF,

∴∠G=MCG

又∵∠1=2,

∴∠2=MCG,

ECMC;

2)當∠1=30°時, 為等腰三角形. 理由如下:

要使為等腰三角形,必有

∴∠1=30°.

型】解答
束】
24

【題目】如圖,已知拋物線經過原點O和點A,點B(2,3)是該拋物線對稱軸上一點,過點BBCx軸交拋物線于點C,連結BOCA,若四邊形OACB是平行四邊形.

1 直接寫出AC兩點的坐標;② 求這條拋物線的函數關系式;

2)設該拋物線的頂點為M,試在線段AC上找出這樣的點P,使得PBM是以BM為底邊的等腰三角形并求出此時點P的坐標;

3)經過點M的直線把□ OACB的面積分為1:3兩部分,求這條直線的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】幸福是奮斗出來的,在數軸上,若CA的距離剛好是3,則C點叫做A幸福點,若CA、B的距離之和為6,則C叫做A、B幸福中心

(1)如圖1,點A表示的數為﹣1,則A的幸福點C所表示的數應該是   

(2)如圖2,M、N為數軸上兩點,點M所表示的數為4,點N所表示的數為﹣2,點C就是M、N的幸福中心,則C所表示的數可以是   (填一個即可);

(3)如圖3,A、B、P為數軸上三點,點A所表示的數為﹣1,點B所表示的數為4,點P所表示的數為8,現有一只電子螞蟻從點P出發,以2個單位每秒的速度向左運動,當經過多少秒時,電子螞蟻是AB的幸福中心?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數的圖象與反比例函數的圖象交于A-2,-1)、B1,n)兩點。

(1)利用圖中條件求反比例函數和一次函數的解析式;

(2)根據圖象寫出使一次函數的值大于反比例函數的值的的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環進行下去,如果次,則可剪出 個正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,,點的坐標為,點的坐標為,點的坐標是__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AB上順次有三個點CD,E,把線段AB分為了2:3:4:5四部分,且AB=28,

1)求線段AE的長;

2)若M,N分別是DEEB的中點,求線段MN的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地.甲、乙兩人同時出發,甲騎電動車從A地勻速前往B地,行走到一半路程時出現故障后停車維修,修好車后以原速繼續行駛到B地;乙騎摩托車從B地勻速前往A地,到達A地后立即按原路原速返回,結果兩人同時到B.甲、乙兩人與B地的距離y(km)與乙行駛時間x(h)之間的函數圖象如圖所示.

1)求甲修車前的速度.

2)求甲、乙第一次相遇的時間.

3)若兩人之間的距離不超過10km時,能夠用無線對講機保持聯系,請直接寫出乙在行進中能用無線對講機與甲保持聯系的x取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.

(1)求a,b的值;

(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PMOB交第一象限內的拋物線于點M,過點M作MCx軸于點C,交AB于點N,過點P作PFMC于點F,設PF的長為t,MN的長為d,求d與t之間的函數關系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,當SACN=SPMN時,連接ON,點Q在線段BP上,過點Q作QRMN交ON于點R,連接MQ、BR,當MQR﹣BRN=45°時,求點R的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视