精英家教網 > 初中數學 > 題目詳情

【題目】已知拋物線的對稱軸是直線,與軸相交于,兩點(點在點右側),與軸交于點

1)求拋物線的解析式和,兩點的坐標;

2)如圖1,若點是拋物線上、兩點之間的一個動點(不與、重合),是否存在點,使四邊形的面積最大?若存在,求點的坐標及四邊形面積的最大值;若不存在,請說明理由;

3)如圖2,若點是拋物線上任意一點,過點軸的平行線,交直線于點,當時,求點的坐標.

【答案】1,點的坐標為,點的坐標為;(2)存在點,使四邊形的面積最大;點的坐標為,四邊形面積的最大值為32;(3)點的坐標為、

【解析】

1)由拋物線的對稱軸是直線 x3,解出 a的值,即可求得拋物線解析式,在

令其 y值為零,解一元二次方程即可求出 A B的坐標;

2)易求點 C的坐標為(0,4),設直線 BC的解析式為 ykx+bk≠0),將 B8,0),

C04)代入 ykx+b,解出 k b的值,即得直線 BC的解析式;設點 P的坐標為 ,過點 P PDy軸,交直線 BC于點 D,則點 D的坐標為 利用關系式 S四邊形 PBOCSBOC+SPBC得出關于 x的二次函數,從而求得其最值;

3)設點 M的坐標為 則點 N的坐標為 , ,分當 0m8時,或當 m0 m 8時來化簡絕對值,從而求解.

1拋物線的對稱軸是直線,

,解得,

拋物線的解析式為:

時,,解得,

的坐標為,點的坐標為

答:拋物線的解析式為:;點的坐標為,點的坐標為

2)當時,,

的坐標為

設直線的解析式為,將,代入

,解得,

直線的解析式為

假設存在點,使四邊形的面積最大,

設點的坐標為,如圖所示,過點軸,交直線于點,則點的坐標為

,

時,四邊形的面積最大,最大值是32

存在點,使得四邊形的面積最大.

答:存在點,使四邊形的面積最大;點的坐標為,四邊形面積的最大值為32

3)設點的坐標為,則點的坐標為,

,

時,,解得,

的坐標為

時,,解得,

的坐標為

答:點的坐標為、、

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的對角線ACBD交于點P-12),ABx軸于點E,正比例函數y=mx的圖像與反比例函數的圖像相交于A,P兩點。

1)求m,n的值與點A的坐標;

2)求證:

3)求的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)經過點A(3,0),B(﹣1,0),C(0,﹣3).

(1)求該拋物線的解析式;

(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標;

(3)若點Qx軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD頂點A在例函數y=(x>0)的圖象上,函數 y=(k>3,x>0)的圖象關于直線AC對稱,且經過點B、D兩點,若AB2,∠DAB30°,則k的值為______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為宣傳66日世界海洋日,某校九年級舉行了主題為珍惜海洋資源,保護海洋生物多樣性的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統計表(表1)和統計圖(如圖).請根據圖表信息解答以下問題:

1)本次調查一共隨機抽取了   個參賽學生的成績;

2)表1   ;

3)所抽取的參賽學生的成績的中位數落在的組別   

4)請你估計,該校九年級競賽成績達到80分以上(含80分)的學生約有   人.

1 知識競賽成績分組統計表

組別

分數/

頻數

A

a

B

10

C

14

D

18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠A36°.

1)用尺規作圖作∠ABC的角平分線,交AC于點D;(保留作圖痕跡,不寫作法).

2)求證:△BCD是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,G、F分別為ADBC的中點,將紙片折疊,使D點落在GF上,得到HAE,再過H點折疊紙片,使B點落在直線AB上,折痕為PQ.連接AF、EF,已知HE=HF,下列結論:①△MEH為等邊三角形;②AEEF;③△PHE∽△HAE ,其中正確的結論是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線x軸于A,B兩點,交y軸于點C.直線經過點A,C

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設點P的橫坐標為m

①當是直角三角形時,求點P的坐標;

②作點B關于點C的對稱點,則平面內存在直線l,使點M,B,到該直線的距離都相等.當點Py軸右側的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某數學課題研究小組針對蘭州市住房窗戶“如何設計遮陽篷”這一課題進行了探究,過程如下:

問題提出:

如下圖是某住戶窗戶上方安裝的遮陽蓬,要求設計的遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內.

方案設計:

如下圖,該數學課題研究小組通過調查研究設計了垂直于墻面的遮陽篷

數據收集:

通過查閱相關資料和實際測量:蘭州市一年中,夏至這一天的正午時刻,太陽光線與遮陽篷的夾角最大():冬至這一天的正午時刻,太陽光線與遮陽篷的夾角最。);窗戶的高度

問題解決:

根據上述方案及數據,求遮陽篷的長.(結果精確到,參考數據:)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视