【題目】如圖,在線段上有一點
,在
的同側作等腰
和等腰
,且
,
,
,直線
與線段
,線段
分別交于點
,對于下列結論:①
∽
;②
∽
;③
;④若
,則
.其中正確的是( )
A. ①②③④B. ①②③C. ①③④D. ①②
【答案】A
【解析】
(1)通過證明∽
,可判斷①;(2)由①
∽
,得
,再證明∠ACE=∠DCB,即可證明②;(3)證明
∽
,來判定③;(4)通過證明△BDC∽△EAC,△EFB∽△EBA, △EFC∽△ECA, △DFC∽△DCG,來對④進行判斷.
解:∵,
,
,
∴∠ACD= ,∠ECB =∠EBC=
,∠ACD=∠EBC.
∴DC∥EB
∴∽
,故①正確;
∵∽
,∴
∵由①得∠ACD=∠ECB,∴∠ACD+∠DCE =∠ECB+∠DCE,即∠ACE=∠DCB,
∴∽
,故②正確;
∵∽
,∴∠CBD=∠FEG,又∵∠FGE=∠CGB,∴
∽
,
∴ , ∴
,故③正確;
∵∠DAC=∠CEB=90°,AC=AD, BE=CE,
∴△ADC和△BCE是等腰直角三角形,
∴CD=AC=
AD,CB=
CE, ∠1=∠2=45°,∠DCE=90°,∠ACE=∠DCB=180°-45°=135°,
∴CD:CA=CB:CE=,
∴△BDC∽△EAC
∴∠3=∠4,∠5=∠6,
又∵∠6+∠7=45°,∴∠5+∠7=45°,
又∵∠8=90°,
∴在△EFB中,∠EFB=180°-∠8-(∠5+∠7)=45°,
在△EFB和△BEA中,
∵∠1=∠2=45°,∴∠DCE=90°=∠CEB,
∴DC∥EB,∴∠7=∠3=∠4,∠FEB=∠BEF,
∴△EFB∽△EBA,
∴EB:EF=AE:EB,
又∵∠5=∠5
∴△EFC∽△ECA,
∴∠EFC=∠ECA=180°-∠2=135°,
∴∠BFC=∠EFC-∠EFB=135°-45°=90°.
∴∠DFC=180°-∠CFB=90°=∠DCG
又∵∠3=∠3
∴△DFC∽△DCG,
∴DC:DF=DG:DC,即DC2=DF×DG
又∵CD=AD
∴(AD)2=DF×DG,即2AD2=DF·DG.故④正確.
故選:A.
科目:初中數學 來源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:
請根據圖中提供的信息,解答下列問題:
(1)求被調查的學生總人數;
(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;
(3)若該校共有800名學生,請估計“最想去景點B“的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -
或
C.
D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標中,菱形ABCO的頂點O在坐標原點,且與反比例函數y=的圖象相交于A(m,3
),C兩點,已知點B(2
,2
),則k的值為( 。
A. 6B. ﹣6C. 6D. ﹣6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,D為BC上一點,連接AD,過點B作BE垂直于CA的延長線于點E,BE與DA的延長線相交于點F.
(1)如圖1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的長;
(2)如圖2,若AB=AC,∠ADB=45°,求證;BC=DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】元旦前夕,某企業接到一批粽子生產任務,約定這批粽子的出廠價為每只4元,按要求在20天內完成.為了按時完成任務,該企業招收了新工人,設新工人小丁第天生產的粽子數量為
只,
與
滿足如下關系:
(1)小丁第幾天生產的粽子數量為280只?
(2)如圖,設第天生產的每只粽子的成本是
元,
與
之間的關系可用圖中的函數圖象來刻畫.若小丁第
天創造的利潤為
元,求
與
之間的函數表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】朗讀者
自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數以億計的觀眾,岳池縣某中學開展“朗讀”比賽活動,九年級
、
班根據初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績
滿分為100分
如圖所示.
平均數 | 中位數 | 眾數 | |
九 | 85 | 85 | |
九 | 80 |
根據圖示填寫表格;
結合兩班復賽成績的平均數和中位數,分析哪個班級的復賽成績較好;
如果規定成績較穩定班級勝出,你認為哪個班級能勝出?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A、B兩點的坐標分別為(20,0)和(0,15),動點P從點A出發在線段AO上以每秒2cm的速度向原點O運動,動直線EF從x軸開始以每秒lcm的速度向上平行移動(即EF∥x軸),分別與y軸、線段AB交于點E、F,連接EP、FP,設動點P與動直線EF同時出發,運動時間為t秒.
(1)求t=9時,△PEF的面積;
(2)直線EF、點P在運動過程中,是否存在這樣的t使得△PEF的面積等于40cm2?若存在,請求出此時t的值;若不存在,請說明理由;
(3)當t為何值時,△EOP與△BOA相似.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校兩次購買足球和籃球的支出情況如表:
足球(個) | 籃球(個) | 總支出(元) | |
第一次 | 2 | 3 | 310 |
第二次 | 5 | 2 | 500 |
(1)求購買一個足球、一個籃球的花費各需多少元?(請列方程組求解)
(2)學校準備給幫扶的貧困學校送足球、籃球共計60個,恰逢市場對兩種球的價格進行了調整,足球售價提高了10%,籃球售價降低了10%,如果要求一次性購得這批球的總費用不超過4000元,那么最多可以購買多少個足球?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com