【題目】如圖,學校環保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( )m.
A.20B.30C.30
D.40
科目:初中數學 來源: 題型:
【題目】數學活動課上,小明和小紅要測量小河對岸大樹BC的高度,小紅在點A測得大樹頂端B的仰角為45°,小明從A點出發沿斜坡走3米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點A到點D的過程中,他上升的高度;
(2)依據他們測量的數據能否求出大樹BC的高度?若能,請計算;若不能,請說明理由.(參考數據:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把函數的圖象繞點
旋轉
,得到新函數
的圖象,我們稱
是
關于點
的相關函數.
的圖象的對稱軸與
軸交點坐標為
.
(1)填空:的值為 (用含
的代數式表示)
(2)若,當
時,函數
的最大值為
,最小值為
,且
,求
的解析式;
(3)當時,
的圖象與
軸相交于
兩點(點
在點
的右側).與
軸相交于點
.把線段
原點
逆時針旋轉
,得到它的對應線段
,若線
與
的圖象有公共點,結合函數圖象,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與
軸,
軸分別交于點
,拋物線
的頂點是
,且與
軸交于
兩點,與
軸交于點
是拋物線上一個動點,過點
作
于點
.
求二次函數的解析式;
當點
運動到何處時,線段PG的長取最小值?最小值為多少?
若點
是拋物線對稱軸上任意點,點
是拋物線上一動點,是否存在點
使得以點
為頂點的四邊形是菱形?若存在,請你直接寫出點
的坐標;若不存在,請你說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小華在晚上由路燈A走向路燈B.當他走到點P時,發現他身后影子的頂部剛好接觸到路燈A的底部;當他向前再步行12m到達點Q時,發現他身前影子的頂部剛好接觸到路燈B的底部.已知小華的身高是1.6m,兩個路燈的高度都是9.6m,且AP=QB.
(1)求兩個路燈之間的距離;
(2)當小華走到路燈B的底部時,他在路燈A下的影長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠有甲種原料,乙種原料
,現用兩種原料生產處
兩種產品共
件,已知生產每件
產品需甲種原料
,乙種原料
,且每件
產品可獲得
元;生產每件
產品甲種原料
,乙種原料
,且每件
產品可獲利潤
元,設生產
產品
件(產品件數為整數件),根據以上信息解答下列問題:
(1)生產兩種產品的方案有哪幾種?
(2)設生產這件產品可獲利
元,寫出關于
的函數解析式,寫出(1)中利潤最大的方案,并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將大小相同的正三角形按如圖所示的規律拼圖案,其中第①個圖案中有6個小三角形和1個正六邊形;第②個圖案中有10個小三角形和2個正六邊形;第③個圖案中有14個小三角形和3個正六邊形;…;按此規律排列下去,已知一個正六邊形的面積為,一個小三角形的面積為
,則第③個圖案中所有的小三角形和正六邊形的面積之和為______.(結果用含
、
的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解放橋是天津市的標志性建筑之一,是一座全鋼結構的部分可開啟的橋梁,
(I)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點C處開啟,則AC開啟至A'C'的位置時,A'C'的長為 .
(II)如圖②,某校數學興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結果保留整數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com