【題目】如圖,在菱形ABCD中,M、N分別在AB、CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=32°,則∠OBC的度數為( )
A.32°B.48°C.58°D.68°
科目:初中數學 來源: 題型:
【題目】如圖①,某商場有可上行和下行的兩條自動扶梯,扶梯上行和下行的長度相等,運行速度相同且保持不變,甲、乙兩人同時站上了上行和下行端,甲站上上行扶梯的同時又以0.8米/秒的速度往上走,乙站上下行扶梯后則站立不動隨扶梯下行,甲到達扶梯頂端后立即乘坐下行扶梯(換乘時間忽略不計)同時以0.8米/秒的速度往下走,乙到達低端后則在原點等候甲,圖②中線段OB、AB分別表示甲、乙兩人在乘坐扶梯過程中,高扶梯底端的路程y(米)與所用時間x(秒)的部分函數圖象,結合圖象解答下列問題:
(1)每條扶梯的長度為 米(直接填空);
(2)求點B的坐標;
(3)乙到達扶梯底端后,還需等待 秒,甲才到達扶梯底端(直接填空).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A點的坐標為(m,3),AB⊥x軸于點B,tan∠OAB=,反比例函數y1=
的圖象的一支經過AO的中點C,且與AB交于點D.
(1)求反比例函數解析式;
(2)設直線OA的解析式為y2=nx,請直接寫出y1<y2時,自變量x的取值范圍 .
(3)如圖2,若函數y=3x與y1=的圖象的另一支交于點M,求△OMB與四邊形OCDB的面積的比值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】周末,小明和小華來濱湖新區渡江紀念館游玩,看到高雄挺拔的“勝利之塔”,萌發了用所學知識測量塔高的想法,如圖,他倆在塔前的平地上選擇一點
,樹立測角儀
,測出看塔頂的仰角約為
,從
點向塔底
走
米到達
點,測出看塔頂的仰角約為
,已知測角儀器高為
米,則塔
的高大約為
( )
A. 141米 B. 101米 C. 91米 D. 96米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙O的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,且點為B,則PB的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐 美妙的黃金矩形
閱讀理解
在數學上稱短邊與長邊的比是(約為0.618)的矩形叫做黃金矩形(GoldenRectangle),黃金矩形蘊藏著豐富的美學價值,給我們以協調、勻稱的美感.
(1)某校團委舉辦“五四手抄報比賽”,手抄報規格統一設計成:長是40cm的黃金矩形,則寬約為__________cm;(精確到0.1cm)
操作發現 利用一張正方形紙片折疊出一個黃金矩形.
第一步,如圖1,折疊正方形紙片ABCD,使AB和DC重合,得到折痕EF(點E,F分別在邊AD,BC上),然后把紙片展平.
第二步,如圖2,折疊正方形紙片ABCD,使得BC落在BE上,點C′和點C對應,得到折痕BG(點G在CD上),再次紙片展平.
第三步,如圖3,沿過點G的直線折疊正方形紙片ABCD,使點A和點D分別落在AB和CD上,折痕為HG,顯然四邊形HBCG為矩形.
(2)在上述操作中,以AB=2為例,證明矩形HBCG是黃金矩形.
(參考計算: =
)
拓廣探索
(3)“希望小組”的同學通過探究發現:以黃金矩形的長邊為一邊,在原黃金矩形外作正方形,得到的新矩形仍然是黃金矩形.
如圖4,如果四邊形ABCD是黃金矩形(AB>AD),四邊形DCEF是正方形,那么四邊形ABEF也是黃金矩形,他們的發現正確嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,(1)在網格中畫出關于y軸對稱的
;
(2)在y軸上確定一點P,使周長最短,(只需作圖,保留作圖痕跡)
(3)寫出關于x軸對稱的
的各頂點坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與直線
交于點A,點A的橫坐標為
,且直線
與x軸交于點B,與y軸交于點D,直線
與y軸交于點C.
(1)求點A的坐標及直線的函數表達式;
(2)連接,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com