8.在二次根式-$\sqrt{72}$,$\sqrt{0.2}$,$\sqrt{{m}^{2}n+mn}$,$\sqrt{{m}^{2}n+{m}^{2}{n}^{2}}$,$\sqrt{3\frac{1}{2}}$,$\frac{\sqrt{mn}}{{m}^{2}}$,$\frac{2}{3}$,$\sqrt{{a}^{2}+4a+4}$最簡二次根式是$\sqrt{{m}^{2}n+mn}$,$\frac{\sqrt{mn}}{{m}^{2}}$.
分析 判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.
解答 解:$\sqrt{{m}^{2}n+mn}$,$\frac{\sqrt{mn}}{{m}^{2}}$是最簡二次根式.
故答案為:$\sqrt{{m}^{2}n+mn}$,$\frac{\sqrt{mn}}{{m}^{2}}$.
點評 本題考查最簡二次根式的定義.根據最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數不含分母;被開方數不含能開得盡方的因數或因式.