【題目】如圖,四邊形ABCD中,BD與AC相交于E點,AE=CE,BC=AC=DC,則tan∠ABDtan∠ADB=_____.
【答案】
【解析】
由BC=AC=DC知A、B、D在以C為圓心的圓上,延長AC交⊙C于點F,連接DF、BF,由圓周角定理知∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,證△ABE∽△DFE、△ADE∽△BFE得=
、
=
,從而由tan∠ABDtan∠ADB=tan∠AFDtan∠AFB=
=
=
=
可得答案.
解:∵BC=AC=DC,
∴點A、B、D在以C為圓心的圓上,
如圖所示,延長AC交⊙C于點F,連接DF、BF、
則∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,
∵∠AEB=∠DEF、∠AED=∠BEF,
∴△ABE∽△DFE,△ADE∽△BFE,
∴、
,
則tan∠ABDtan∠ADB=tan∠AFDtan∠AFB
=
=
=
=,
設AE=CE=x,則AC=CF=2x,
∴AF=4x,
∴EF=AF﹣AE=3x,
則tan∠ABDtan∠ADB==
,
故答案為:.
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣+bx+c交x軸負半軸于點A,交y軸正半軸于點B,直線AB的解析式為y=
.
(1)求b,c的值;
(2)BA沿y軸翻折180°得到BA′,F為A′B上一點,BF的垂直平分線交y軸于點L,R為x軸上一點,BF+OR=2,QR⊥FL于Q,求QR的長;
(3)在(2)的條件下,直線LF交x軸于點D,E為拋物線第一象限上一點,BE=BD,∠ABE+∠ABD=180°,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1.以下結論:①2a>-b;②4a+2b+c>0;③m(am+b)>a+b(m是大于1的實數);④3a+c<0其中正確結論的個數為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,AB是的直徑,C是
上一點,連接AC,過點C作直線
于D(
),點E是DB上任意一點(點D、B除外),直線CE交
于點F.連接AF與直線CD交于點G.
(1)求證:
(2)若點E是AD(點A除外)上任意一點,上述結論是否仍然成立?若成立,請畫出圖形并給予證明;若不成立,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足.下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( 。
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,
,
于
,
,
為
邊上一點.
(1)當時,直接寫出
,
.
(2)如圖1,當,
時,連
并延長交
延長線于
,求證:
.
(3)如圖2,連交
于
,當
且
時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)解方程:;
(2)如圖,在平面直角坐標系中,的三個頂點的坐標分別為
、
、
.
①將向左平移5個單位得到
,寫出
三頂點的坐標;
②將繞原點
逆時針旋轉
后得到
,請你畫出
;
③與
重合部分的面積為 .(直接寫出)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于(-1,0),(3,0)兩點,則下列說法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)為拋物線上三點,且-1<x1<x2<1,x3>3,則y2<y1<y3,其中正確的結論是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程。
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com