精英家教網 > 初中數學 > 題目詳情
10.△ABC中,∠A=90°,∠C=30°,AB=1,兩個動點P和Q同時從點A出發,P沿AC運動,Q沿AB,BC運動,結果兩個動點同時到達點C.
(1)點Q的速度是點P速度的幾倍?
(2)當AP為何值時,△APQ的面積為$\frac{3\sqrt{3}}{16}$?

分析 (1)根據P、Q同時出發、同時到達,知P、Q時間一致,路程比即等于速度比可得;
(2)分點Q在AB、BC上運動討論,點Q在AB上運動時面積最大值小于$\frac{3\sqrt{3}}{16}$情況排除,點Q在BC上運動時,求出AP邊上的高,根據面積列出方程求解可得AP的值.

解答 解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,
∴BC=2,AC=$\sqrt{3}$,
∵兩個動點P,Q同時從A點出發,點P沿AC運動,點Q沿AB,BC運動,兩點同時到達點C
∴Q的速度是P的速度的(2+1)÷$\sqrt{3}$=$\sqrt{3}$倍;

(2)設AP=x,由(1)知Q點運動路程為$\sqrt{3}$x,
①點Q在AB上運動,0≤$\sqrt{3}x$≤1,即0≤x≤$\frac{\sqrt{3}}{3}$,
當點Q與點B重合時,△APQ的面積最大;
此時AQ=AB=1,則AP=$\frac{\sqrt{3}}{3}$,
故△APQ的面積為:$\frac{1}{2}×\frac{\sqrt{3}}{3}×1$=$\frac{\sqrt{3}}{6}$<$\frac{3\sqrt{3}}{16}$;
②點Q在BC上運動,1<$\sqrt{3}x$≤3,即$\frac{\sqrt{3}}{3}$<x≤$\sqrt{3}$;

如圖所示,過點Q作QM⊥AC,垂足為M,
則CQ=3-$\sqrt{3}$x,
∵在△ABC中,∠A=90°,∠C=30°,
∴QM=$\frac{1}{2}$CQ=$\frac{3-\sqrt{3}x}{2}$,
根據題意,得:$\frac{1}{2}•x•\frac{3-\sqrt{3}x}{2}=\frac{3\sqrt{3}}{16}$,
解得:x=$\frac{\sqrt{3}}{2}$(符合題意).
答:當AP為$\frac{\sqrt{3}}{2}$時,△APQ的面積為$\frac{3\sqrt{3}}{16}$.

點評 本題主要考查點的運動綜合問題,求AP的值分情況討論是前提,求出高并根據面積列出方程求解是關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

20.如圖,公園入口處原有三級臺階,每級臺階高為20cm,深為30cm,為方便殘疾人士,擬將臺階改成斜坡,臺階的起點為A,斜坡的起始點為C,若斜坡的坡角∠BCA設計為14°,則斜坡起點C應離A點多遠?(精確到1cm)(參考數據:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

1.已知M(-1,a)與N(3,4-a)是反比例函數y=$\frac{k}{x}$圖象上的兩個點,則a的值為6.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

18.仔細視察下列圖案,其中(填序號):

①、③是軸對稱圖形,②、③是中心對稱圖形,③既是軸對稱圖形又是中心對稱圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.如圖,已知m∥n,試判斷∠1,∠2,∠3,∠4會滿足怎樣的關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

15.如圖,△ABC中,∠C=90°,AC=AE,DE⊥AB于點E,∠CDA=α,則∠B=2α-90°.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

2.一個門框的尺寸如圖所示:
①若有一塊長3米,寬0.8米的薄木板,問能否從門框內通過?為什么?
②若薄木板長3米,寬1.5米呢?
③若薄木板長3米,寬2.2米呢?為什么?
思考:木板過門框有哪幾種放置方式?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

13.如圖,△ABC內接于⊙O,AB=AC,D在優弧ABC,∠ACD=45°.
(1)如圖1,AB交CD于E,連CD,若AB=CD,求證:AC=$\sqrt{2}$AE;
(2)如圖2,連AD、CD,若tan∠BAD=$\frac{1}{3}$,求tan∠BDC.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

14.如圖所示,A、B、C是同一直線上的依次三點,下列說法正確的是(  )
A.射線AB與射線BA是同一條射線B.射線BA與射線BC是同一條射線
C.射線AB與射線AC是同一條射線D.直線BA與直線BC不是同一條直線

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视