【題目】閱讀下面材料:隨著人們認識的不斷深入,畢達哥拉斯學派逐漸承認不是有理數,并給出了證明.假設是
有理數,那么存在兩個互質的正整數p,q,使得
,于是
,兩邊平方得p2=2q2 . 因為2q2是偶數,所以p2是偶數,而只有偶數的平方才是偶數,所以p也是偶數.因此可設p=2s,代入上式,得4s2=2q2 , 即q2=2s2 , 所以q也是偶數,這樣,p和q都是偶數,不互質,這與假設p,q互質矛盾,這個矛盾說明,
不能寫成分數的形式,即
不是有理數.請你有類似的方法,證明
不是有理數.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(5,0),點B的坐標為(3,2),直線
經過原點和點B,直線
經過點A和點B.
(1)求直線,
的函數關系式;
(2)根據函數圖像回答:不等式的解集為 ;
(3)若點是
軸上的一動點,經過點P作直線
∥
軸,交直線
于點C,交直線
于點D,分別經過點C,D向
軸作垂線,垂足分別為點E, F,得長方形CDFE.
①若設點P的橫坐標為m,則點C的坐標為(m, ),點D的坐標為(m, );(用含字母m的式子表示)
②若長方形CDFE的周長為26,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.點P在線段AB上以lcm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=l時,△ACP與△BPQ是否全等?PC與PQ是否垂直?請分別說明理由;
(2)如圖(2),將圖(1)中的“AC上AB于A,BD上AB于B”改為“∠CAB=∠DBA=60”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.
(1)如圖1,矩形ABCD中,若AB=3,BC=9,則稱矩形ABCD為 階奇異矩形.
(2)如圖2,矩形ABCD長為7,寬為3,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.
(3)已知矩形ABCD的一邊長為20,另一邊長為a(a<20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方直接寫出a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某食品廠生產的一種巧克力糖每千克成本為24元,其銷售方案有如下兩種:
方案一:若直接給本廠設在銀川的門市部銷售,則每千克售價為32元,但門市部每月需上繳有關費用2400元;
方案二:若直接批發給本地超市銷售,則出廠價為每千克28元.若每月只能按一種方案銷售,且每種方案都能按月銷售完當月產品,設該廠每月的銷售量為xkg.
(1)你若是廠長,應如何選擇銷售方案,可使工廠當月所獲利潤更大?
(2)廠長看到會計送來的第一季度銷售量與利潤關系的報表后(下表),發現該表填寫的銷售量與實際有不符之處,請找出不符之處,并計算第一季度的實際銷售總量.
一月 | 二月 | 三月 | |
銷售量(kg) | 550 | 600 | 1400 |
利潤(元) | 2000 | 2400 | 5600 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊后,使得點D與點B重合,點C落在點C′的位置上.
(1)△BEF是等腰三角形嗎?試說明理由;
(2)若AB=4,AD=8,求CF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】要在一塊長52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設計方案.
(1)求小亮設計方案中甬路的寬度x;
(2)求小穎設計方案中四塊綠地的總面積.(友情提示:小穎設計方案中的x與小亮設計方案中的x取值相同)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com