【題目】為了了解我市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統計表和統計圖,如圖所示,請根據圖表信息解答下列問題:
組別 | 分數段(分) | 頻數 |
A組 | 60≤x<70 | 30 |
B組 | 70≤x<80 | 90 |
C組 | 80≤x<90 | m |
D組 | 90≤x<100 | 60 |
(1)本次調查的總人數為 人.
(2)補全頻數分布直方圖;
(3)若A組學生的平均分是65分,B組學生的平均分是75分,C組學生的平均分是85分,D出學生的平均分是95分,請你估計參加本次測試的同學們平均成績是多少分?
科目:初中數學 來源: 題型:
【題目】如圖,已知等邊△ABC中,AB=12.以AB為直徑的半⊙O與邊AC相交于點D.過點D作DE⊥BC,垂足為E;過點E作EF⊥AB,垂足為F,連接DF.
(1)求證:DE是⊙O的切線;
(2)求EF的長;
(3)求sin∠EFD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017四川省達州市,第10題,3分)已知函數的圖象如圖所示,點P是y軸負半軸上一動點,過點P作y軸的垂線交圖象于A,B兩點,連接OA、OB.下列結論:
①若點M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;
②當點P坐標為(0,﹣3)時,△AOB是等腰三角形;
③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;
④當點P移動到使∠AOB=90°時,點A的坐標為(,
).
其中正確的結論個數為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點D、E分別在邊BC、DC上,AB2 =BE · DC ,DE:EC=3:1 ,F是邊AC上的一點,DF與AE交于點G.
(1)找出圖中與△ACD相似的三角形,并說明理由;
(2)當DF平分∠ADC時,求DG:DF的值;
(3)如圖,當∠BAC=90°,且DF⊥AE時,求DG:DF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐—探究正方形旋轉中的數學問題
問題情境:已知正方形中,點
在
邊上,且
.將正方形
繞點
順時針旋轉得到正方形
(點
,
,
,
分別是點
,
,
,
的對應點).同學們通過小組合作,提出下列數學問題,請你解答.
特例分析:(1)“樂思”小組提出問題:如圖1,當點落在正方形
的對角線
上時,設線段
與
交于點
.求證:四邊形
是矩形;
(2)“善學”小組提出問題:如圖2,當線段經過點
時,猜想線段
與
滿足的數量關系,并說明理由;
深入探究:(3)請從下面,
兩題中任選一題作答.我選擇題.
A.在圖2中連接和
,請直接寫出
的值.
B.“好問”小組提出問題:如圖3,在正方形繞點
順時針旋轉的過程中,設直線
交線段
于點
.連接
,并過點
作
于點
.請在圖3中補全圖形,并直接寫出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的面積等分線.
問題探究
(1)如圖1,△ABC中,點M是AB邊的中點,請你過點M作△ABC的一條面積等分線;
(2)如圖2,在四邊形ABCD中,AD∥BC,CD⊥AD,AD=2,CD=4,BC=6,點P是AB的中點,點Q在CD上,試探究當CQ的長為多少時,直線PQ是四邊形ABCD的一條面積等分線;
問題解決
(3)如圖3,在平面直角坐標系中,矩形ABCD是某公司將要籌建的花園示意圖,A與原點重合,D、B分別在x軸、y軸上,其中AB=3,BC=5,出入口E在邊AD上,且AE=1,擬在邊BC、AB、CD、上依次再找一個出入口F、G、H,沿EF、GH修兩條筆直的道路(路的寬度不計)將花園分成四塊,在每一塊內各種植一種花草,并要求四種花草的種植面積相等.請你求出此時直線EF和GH的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,M、N在對角線AC上且∠MBN=45°,作ME⊥AB于點E、NF⊥BC于點F,反向延長ME、NF交點G,則GEGF的值是( )
A.3B.3 C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果直線l把△ABC分割后的兩個部分面積相等,且周長也相等,那么就把直線l叫做△ABC的“完美分割線”,已知在△ABC中,AB=AC,△ABC的一條“完美分割線”為直線l,且直線l平行于BC,若AB=2,則BC的長等于_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中,點D、E、F分別是AB、AC、BC中點,點M在CB的延長線上,△DMN為等邊三角形,且EN經過F點.下列結論:①EN=MF ②MB=FN ③MP·DP=NP·FP ④MB·BP=PF·FC,正確的結論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com