【題目】如圖,E,F分別是正方形ABCD的邊CB,DC延長線上的點,且BE=CF,過點E作EG∥BF,交正方形外角的平分線CG于點G,連接GF.
(1)求∠AEG的度數;
(2)求證:四邊形BEGF是平行四邊形.
【答案】(1)90°;(2)證明見解析.
【解析】
(1)由SAS證明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行線的性質得出∠CBF=∠CEG,證出AE⊥EG,即可得出結論;
(2)延長AB至點P,使BP=BE,連接EP,則AP=CE,∠EBP=90°,證明△APE≌△ECG得出AE=EG,證出EG=BF,即可得出結論.
證明:(1)∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠ABE=∠BCF=90°,
在△ABE和△BCF中,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∵EG∥BF,
∴∠CBF=∠CEG,
∵∠BAE+∠BEA=90°,
∴∠CEG+∠BEA=90°,
∴AE⊥EG,
∴∠AEG的度數為90°;
(2)延長AB至點P,使BP=BE,連接EP,如圖所示:
則AP=CE,∠EBP=90°,
∴∠P=45°,
∵CG為正方形ABCD外角的平分線,
∴∠ECG=45°,
∴∠P=∠ECG,
由(1)得∠BAE=∠CEG,
在△APE和△ECG中,
∴△APE≌△ECG(ASA),
∴AE=EG,
∵AE=BF,
∴EG=BF,
∵EG∥BF,
∴四邊形BEGF是平行四邊形.
科目:初中數學 來源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥,12周后,記錄了兩組患者的生理指標和
的數據,并制成下圖,其中“*”表示服藥者,“+”表示未服藥者;
同時記錄了服藥患者在4周、8周、12周后的指標z的改善情況,并繪制成條形統計圖.
根據以上信息,回答下列問題:
(1)從服藥的50名患者中隨機選出一人,求此人指標的值大于1.7的概率;
(2)設這100名患者中服藥者指標數據的方差為
,未服藥者指標
數據的方差為
,則
;(填“>”、“=”或“<” )
(3)對于指標z的改善情況,下列推斷合理的是 .
①服藥4周后,超過一半的患者指標z沒有改善,說明此藥對指標z沒有太大作用;
②在服藥的12周內,隨著服藥時間的增長,對指標z的改善效果越來越明顯.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解七、八年級學生一分鐘跳繩情況,從這兩個年級隨機抽取名學生進行測試,并對測試成績(一分鐘跳繩次數)進行整理、描述和分析,下面給出了部分信息:
七年級學生一分鐘跳繩成績頻數分布直方圖
七、八年級學生一分鐘跳繩成績分析表
七年級學生一分鐘跳繩成績(數據分組:
)在
這一組的是:
根據以上信息,回答下列問題:
表中
;
在這次測試中,七年級甲同學的成績
次,八年級乙同學的成績
,他們的測試成績,在各自年級所抽取的
名同學中,排名更靠前的是 (填“甲”或“乙”),理由是 .
該校七年級共有
名學生,估計一分鐘跳繩不低于
次的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形中,
,
,過點
作邊
的垂線
交
的延長線于點
,點
是垂足,連接
、
,
交
于點
.則下列結論:①四邊形
是正方形;②
;③
;④
,正確的個數是( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),與y軸交于(0,2),拋物線的對稱軸為直線x=1,則下列結論中:①a+c=b;②方程ax2+bx+c=0的解為﹣1和3;③2a+b=0;④c﹣a>2,其中正確的結論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將圓心角為120°的扇形AOB繞著點A按逆時針方向旋轉一定的角度后,得到扇形AO′B′,使得點O′ 恰在上.
(1)求作點O′;(尺規作圖,保留作圖痕跡,不寫作法和證明過程)
(2)連接AB、AB'、AO′,求證:AO′平分∠BAB′.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為迎接2022年冬奧會,鼓勵更多的大學生參與到志愿服務中,甲、乙兩所學校組織了志愿服務團隊選拔活動,經過初選,兩所學校各有300名學生進入綜合素質展示環節,為了了解這些學生的整體情況,從兩校進入綜合素質展示環節的學生中分別隨機抽取了50名學生的綜合素質展示成績(百分制),并對數據(成績)進行整理、描述和分析,下面給出了部分信息.
a.甲學校學生成績的頻數分布直方圖如圖(數據分成6組:,
,
,
,
,
).
b.甲學校學生成績在這一組是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙學校學生成績的平均數、中位數、眾數、優秀率(85分及以上為優秀)如下:
平均數 | 中位數 | 眾數 | 優秀率 |
83.3 | 84 | 78 | 46% |
根據以上信息,回答下列問題:
(1)甲學校學生,乙學校學生
的綜合素質展示成績同為82分,這兩人在本校學生中綜合素質展示排名更靠前的是________(填“
”或“
”);
(2)根據上述信息,推斷________學校綜合素質展示的水平更高,理由為:__________________________
(至少從兩個不同的角度說明推斷的合理性).
(3)若每所學校綜合素質展示的前120名學生將被選入志愿服務團隊,預估甲學校分數至少達到________分的學生才可以入選.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】投石機是古代的大型攻城武器,是數學、工程、物理等復雜學科相互融合的應用(如圖(1)).在我國《元史·亦思馬因傳》中對這種投石機就有過記載(如圖(2)).
圖(3)是圖(1)中人工投石機的側面示意圖,炮架的橫向支架均與地面相互平行,已知米,炮軸距地面4.5米,
,炮梢頂端點
能到達水平地面,最高點能到達點
處,且旋轉的夾角
(點
,
,
,
在同一平面內),求點
到水平地面的距離.(參考數據:
,
,
,
,
,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com