A. | 4 | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 2 |
分析 分別作∠A與∠B角平分線,交點為P.由三線合一可知AP與BP為CD、CE垂直平分線;再由垂徑定理可知圓心O在CD、CE垂直平分線上,則交點P與圓心O重合,即圓心O是一個定點;連OC,若半徑OC最短,則OC⊥AB,由△AOB為底邊4,底角30°的等腰三角形,可求得OC=$\frac{2\sqrt{3}}{3}$.
解答 解:如圖,分別作∠A與∠B角平分線,交點為P.
∵△ACD和△BCE都是等邊三角形,
∴AP與BP為CD、CE垂直平分線.
又∵圓心O在CD、CE垂直平分線上,則交點P與圓心O重合,即圓心O是一個定點.
連接OC.
若半徑OC最短,則OC⊥AB.
又∵∠OAC=∠OBC=30°,AB=4,
∴OA=OB,
∴AC=BC=2,
∴在直角△AOC中,OC=AC•tan∠OAC=2×tan30°=$\frac{2\sqrt{3}}{3}$.
故選:B.
點評 本題考查了圓的綜合題.需要掌握等邊三角形的“三線合一”的性質,三角形的外接圓圓心為三角形的垂心,點到直線的距離垂線段最短以及解直角三角形等知識點.難度不大,注意數形結合數學思想的應用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com