精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分10分)選修4-4:坐標系與參數方程

已知直線的極坐標方程為,圓的參數方程為

(其中為參數).

)將直線的極坐標方程化為直角坐標方程;

)求圓上的點到直線的距離的最小值.

【答案】(1; (2

【解析】本題考查極坐標方程與直角坐標方程,參數方程與普通方程的互化,考查點線距離公式的運用,屬于基礎題.

)以極點為原點,極軸為x軸正半軸建立直角坐標系,利用和角的正弦函數,即可求得該直線的直角坐標方程;

)圓M的普通方程為:x2+y+22=4,求出圓心M0-2)到直線x+y-1=0的距離,即可得到圓M上的點到直線的距離的最小值.

)以極點為原點,極軸為軸正半軸建立直角坐標系. ----------------1

----------------2

所以,該直線的直角坐標方程為:----------------3

)圓的普通方程為:----------------4

圓心到直線的距離---------------5

所以,圓上的點到直線的距離的最小值為----------------7

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在某次測驗中,有6位同學的平均成績為75分.用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學同學的成績如表:

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同學的成績x6及這6位同學成績的標準差s;
(2)若從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區間[68,75)中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】探究函數的最小值,并確定取得最小值時x的值.列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.002

4.04

4.3

5

4.8

7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.

函數在區間(0,2)上遞減;

函數在區間 上遞增.

時, .

證明:函數在區間(0,2)遞減.

思考:函數時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設兩條直線的方程分別為x+y+a=0和 x+y+b=0,已知a、b是關于x的方程x2+x+c=0的兩個實根,且0≤c≤ ,則這兩條直線間距離的最大值和最小值分別為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如右圖所示,已知點的重心,過點作直線與兩邊分別交于兩點,且,則的最小值為 ( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列前5項和為50, ,數列的前項和為, , .

(Ⅰ)求數列, 的通項公式;

(Ⅱ)若數列滿足, ,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】凸函數的性質定理為:如果函數f(x)在區間D上是凸函數,則對于區間D內的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數y=sinx在區間(0,π)上是凸函數,則在△ABC中,sinA+sinB+sinC的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數,并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義max{{x,y}= ,設f(x)=max{ax﹣a,﹣logax}(x∈R+ , a>0,a≠1).若a= ,則f(2)+f( )=;若a>1,則不等式f(x)≥2的解集是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视