如圖,在直三棱柱中,
,
分別是
的中點,且
.
(1)求直線與
所成角的大小;
(2)求直線與平面
所成角的正弦值.
(1);(2)
.
解析試題分析:由已知有AC、BC、CC1兩兩互相垂直,故可分別以、
、
所在直線為
軸建立空間直角坐標系.然后由已知就可寫出所需各點的空間坐標.(1)由此就可寫出向量
的坐標,然后再由兩向量的夾角公式:
求出這兩向量的夾角的余弦值,最后轉化為對應兩直線的夾角大。恢皇菓撟⒁鈨芍本的夾角的取值范圍是
,而兩向量的夾角的取值范圍是
;所以求出兩向量的夾角的余弦值后取絕對值才是兩直線的夾角的余弦值;(2)由中點坐標公式可求得點E的坐標,進而就可寫出向量
的坐標,再設平面
的一個法向量為
,由
,就可求出平面
的一個法向量,從而就可求得這兩向量夾角的余弦值,注意直線與平面所成的角的正弦值就等于直線的方向向量與平面法向量夾角的余弦值.
試題解析:解:分別以、
、
所在直線為
軸建立空間直角坐標系.
則由題意可得:,
,
,
,
,
,
又分別是
的中點,
,
. 3分
(1)因為,
,
所以, 7分
直線
與
所成角的大小為
. 8分
(2)設平面的一個法向量為
,由
,得
,
可取
, 10分
又,所以
, 13分
直線
與平面
所成角的正弦值為
. 14分
考點:1.異面直線所成的角;2.直線與平面所成的角.
科目:高中數學 來源: 題型:解答題
如圖1,在直角梯形中,
,
,且
.現以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,
為
的中點,如圖2.
(1)求證:∥平面
;
(2)求證:平面
;
(3)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知的直徑AB=3,點C為
上異于A,B的一點,
平面ABC,且VC=2,點M為線段VB的中點.
(1)求證:平面VAC;
(2)若AC=1,求直線AM與平面VAC所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,圓錐頂點為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°.
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知四棱錐,底面
為矩形,側棱
,其中
,
為側棱
上的兩個三等分點,如下圖所示.
(1)求證:;
(2)求異面直線與
所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
設α、β、γ為彼此不重合的三個平面,ι為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ,
②若α⊥γ,β⊥γ,且αnβ=ι,則ι⊥γ
③若直線l與平面α內的無數條直線垂直則直線ι與平而α垂直,
④若α內存在不共線的三點到β的距離相等.則平面α平行于平面β
上面命題中,真命題的序號為 (寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com