【題目】如圖,直三棱柱中,
,
,
,
為
的中點,點
為線段
上的一點.
(1)若,求證:
;
(2)若,異面直線
與
所成的角為
,求直線
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1) 根據三棱柱是直三棱柱的特征,又,可作
中點
,連接DM,通過線面垂直證明
平面
,可推出
,又
,可證
(2) 通過作圖,分別以,
,
為
軸、
軸、
軸,建立空間直角體系,先通過幾何法求出
長度,分別表示出線面角各點對應的坐標,再用向量公式算出直線
與平面
所成角的正弦值
證明:(1)取中點
,連接
,
,有
,
因為,所以
,
又因為三棱柱為直三棱柱,
所以平面平面
,
又因為平面平面
,
所以平面
,
又因為平面
,
所以
又因為,
,
平面
,
平面
,
所以平面
,
又因為平面
,
所以,因為
,
所以.
(2)設,如圖以
為坐標原點,
分別以,
,
為
軸、
軸、
軸,建立空間直角體系,
由(1)可知,
,所以
,
故,
,
,
,
,
對平面,
,
,
所以其法向量可表示為.
又,
所以直線與平面
成角的正弦值
.
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表(其中浮動比率是在基準保費上上下浮動):
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮 | |
上兩個年度未發生有責任道路交通事故 | 下浮 | |
上三個及以上年度未發生有責任道路交通事故 | 下浮 | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | ||
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮 | |
上一個年度發生有責任道路交通死亡事故 | 上浮 |
某機構為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了
輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 |
(Ⅰ)求這輛車普通
座以下私家車在第四年續保時保費的平均值(精確到
元)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.假設購進一輛事故車虧損元,一輛非事故車盈利
元,且各種投保類型車的頻率與上述機構調查的頻率一致.試完成下列問題:
①若該銷售商店內有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內隨機挑選輛車,求這
輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進輛車(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓上任意一點到兩焦點
距離之和為
,離心率為
.
(1)求橢圓的標準方程;
(2)若直線的斜率為
,直線
與橢圓C交于
兩點.點
為橢圓上一點,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體,底面ABFE是邊長為2的正方形,DE與CF均垂直于平面ABFE,且.
(1)證明:BE∥平面ACD;
(2)求三棱錐B﹣ACD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地有一企業2007年建廠并開始投資生產,年份代號為7,2008年年份代號為8,依次類推.經連續統計9年的收入情況如下表(經數據分析可用線性回歸模型擬合與
的關系):
年份代號( | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當年收入( | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關于
的線性回歸方程
;
(Ⅱ)試預測2020年該企業的收入.
(參考公式:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△OAB中,頂點A的坐標是(3,0),頂點B的坐標是(1,2),記△OAB位于直線左側圖形的面積為f(t).
(1)求函數f(t)的解析式;
(2)設函數,求函數
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com