精英家教網 > 高中數學 > 題目詳情

【題目】如圖,直三棱柱中,,,,側面中心為O,點E是側棱上的一個動點,有下列判斷,正確的是(

A.直三棱柱側面積是B.直三棱柱體積是

C.三棱錐的體積為定值D.的最小值為

【答案】ACD

【解析】

由題意畫出圖形,計算直三棱柱的側面積和體積即可判斷AB;由棱錐底面積與高為定值判斷C;設BEx,列出AE+EC1關于x的函數式,結合其幾何意義求出最小值判斷D

在直三棱柱中,,,

底面是等腰直角三角形,側面全是矩形,所以其側面積為1×2×2+,故A正確;

直三棱柱的體積為,故B不正確;

BB1∥平面AA1C1C,且E是側棱上的一個動點, 三棱錐的高為定值,

××2,××,故C正確;

BEx,則B1E2x,在中,∴.由其幾何意義,

即平面內動點(x,1)與兩定點(0,0),(2,0)距離和的最小值,由對稱可知,當的中點時,其最小值為,故D正確.

故選:ACD

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

)當時,求的極大值;

)若函數的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義在區間D上的函數,若存在正整數k,使不等式恒成立,則稱型函數.

1)設函數,定義域.型函數,求實數a的取值范圍;

2)設函數,定義域.判斷是否為型函數,并給出證明.

(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某臺函數計算器上有一個顯示屏和兩個操作鍵.若按一下第一個操作鍵,則將原顯示屏上的數變為表示不超過實數x的最大整數);若按一下第二個操作鍵,則將原顯示屏上的數變為.稱按一下任意一個操作鍵為一次操作.現在顯示屏上的數為1.問:

(1)是否可以經過有限次操作,顯示屏上出現整數2000?說明理由.

(2)小于2000的整數中有多少個數可以經過有限次操作在顯示屏上出現?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是定義在上的偶函數,對任意,都有,且當時,.在區間內關于的方程恰有個不同的實數根,則實數的取值范圍是_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的三邊長分別為a,b,c,其面積為S,則的內切圓O的半徑.這是一道平面幾何題,其證明方法采用“等面積法”設空間四面體四個面的面積分別為積為V,內切球半徑為R.請用類比推理方法猜測對空間四面體存在類似結論為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《周髀算經》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,e為自然對數的底數,e≈2.718).對于任意的(0,e),在區間(0,e)上總存在兩個不同的,,使得,則整數a的取值集合是_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,側面為等邊三角形且垂直于底面

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视