【題目】若曲線C上任意一點與直線上任意一點的距離都大于1,則稱曲線C遠離”直線
,在下列曲線中,“遠離”直線
:y=2x的曲線有___________(寫出所有符合條件的曲線的編號)
①曲線C:;②曲線C:
;③曲線C:
;
④曲線C:;⑤曲線C:
.
【答案】②③⑤
【解析】
對于①利用兩條平行線間的距離公式來判斷;對于②,設出曲線斜率為的切線方程,利用判別式為零求出這條切線方程,再利用兩條平行線間的距離公式來判斷;對于③,利用點到直線距離來判斷.對于④,利用圖像上的特殊點進行排除;對于⑤,利用導數求得曲線上和直線
平行的切線的切點,然后利用點到直線的距離公式來判斷.
對于①,由兩條平行線間的距離公式得兩直線距離為,不符合題意.對于②,設
與拋物線相切,即
,也即
,判別式
,故切線方程為
,與
的距離為
,符合題意.對于③,方程表示點
,到直線
的距離為
符合題意.對于④,取點
,到直線
的距離為
不符合題意.對于⑤,令
,解得
,切點為
,到直線
的距離為
,符合題意.綜上所述,符合題意的有②③⑤.
科目:高中數學 來源: 題型:
【題目】近年來,我國電子商務蓬勃發展,有關部門推出了針對網購平臺的商品和服務的評價系統,從該系統中隨機選出100次成功了的交易,并對這些交易的評價進行統計,網購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為40次.
(1)根據已知條件完成下面的列聯表,并回答能否有
的把握認為“網購者對服務滿意與對商品滿意之間有關”?
(2)若將頻率視為概率,某人在該網購平臺上進行的3次購物中,設對商品和服務都滿意的次數為,求
的分布列和數學期望.
附: (其中
為樣本容量)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學有初中學生1800人,高中學生1200人.為了解學生本學期課外閱讀時間,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們課外閱讀時間,然后按“初中學生”和“高中學生”分為兩組,再將每組學生的閱讀時間(單位:小時)分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統計,得到如下圖所示的頻率分布直方圖.
(I)寫出a的值;
(II)試估計該校所有學生中,閱讀時間不小于30個小時的學生人數;
(III)從閱讀時間不足10個小時的樣本學生中隨機抽取3人,并用X表示其中初中生的人數,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線(
為參數),曲線
,將
的橫坐標伸長為原來的2倍,縱坐標縮短為原來的
得到曲線
.
(1)求曲線的普通方程,曲線
的直角坐標方程;
(2)若點為曲線
上的任意一點,
為曲線
上的任意一點,求線段
的最小值,并求此時的
的坐標;
(3)過(2)中求出的點做一直線
,交曲線
于
兩點,求
面積的最大值(
為直角坐標系的坐標原點),并求出此時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com