精英家教網 > 高中數學 > 題目詳情

【題目】某闖關游戲共有兩關,游戲規則:先闖第一關,當第一關闖過后,才能進入第二關,兩關都闖過,則闖關成功,且每關各有兩次闖關機會.已知闖關者甲第一關每次闖過的概率均為,第二關每次闖過的概率均為.假設他不放棄每次闖關機會,且每次闖關互不影響.

(1)求甲恰好闖關3次才闖關成功的概率;

(2)記甲闖關的次數為,求隨機變量的分布列和期望.。

【答案】(1) (2)見解析

【解析】

1)先分類,再分別根據獨立事件概率乘法公式求解,最后求和得結果,(2)先確定隨機變量,再分別求對應概率,列表得分布列,根據數學期望公式得結果.

解:(1)設事件為“甲恰好闖關次才闖關成功的概率”,則有

,

(2)由已知得:隨機變量的所有可能取值為,

所以,,

.

從而

2

3

4

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓經過點,一個焦點為

1)求橢圓的方程;

2)若直線軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設定點,常數,動點,設,且

1)求動點的軌跡方程;

2)設直線與點的軌跡交于,兩點,問是否存在實數使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數學、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調查.

(1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數;

(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生講行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據調查結果得到的列聯表,請將列聯表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

性別

選擇物理

選擇歷史

總計

男生

50

女生

30

總計

(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

(1)當時,求的極值;

(2)若有2個不同零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,且橢圓上存在一點,滿足.

(1)求橢圓的標準方程;

(2)過橢圓右焦點的直線與橢圓交于不同的兩點,求的內切圓的半徑的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小區為了提高小區內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現對小區看書人員進行年齡調查,隨機抽取了一天40名讀書者進行調查. 將他們的年齡分成6段:

,

后得到如圖所示的頻率分布直方圖,問:

1)在40名讀書者中年齡分布在的人數;

2)估計40名讀書者年齡的平均數和中位數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”問題,原文如下:有物不知數,三三數之剩二,五五數之剩三,問物幾何?即,一個整數除以三余二,除以五余三,求這個整數.設這個整數為,當時,符合條件的共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上單調遞減,且滿足, () 求的取值范圍;()設,求在上的最大值和最小值

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视