【題目】為推行“高中新課程改革”,某數學老師分別用“傳統教學”和“新課程”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果.期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統計,結果如下表:記成績不低于120分者為“成績優良”.
分數 | |||||
甲班頻數 | 7 | 5 | 4 | 3 | 1 |
乙班頻數 | 1 | 2 | 5 | 5 | 7 |
(1)從以上統計數據填寫下面列聯表,并判斷能否犯錯誤的頻率不超過0.01的前提下認為“成績優良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
P( | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
附:,其中
.臨界值表如上表:
(2)現從上述40人中,學校按成績是否優良采用分層抽樣的方法抽取8人進行考核,在這8人中,記成績不優良的乙班人數為X,求X的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】從某高中學生的體能測試結果中,隨機抽取100名學生的測試結果,按體重分組得到如圖所示的頻率分布直方圖.
(1)若該校約有的學生體重不超過“標準體重
”,試估計
的值,并說明理由;
(2)從第3、4、5組中用分層抽樣的方法抽取6名學生進行了第二次測試,現從這6人中隨機抽取2人進行日常運動習慣的問卷調查,求抽到4組的人數的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的一個焦點為
,四條直線
,
所圍成的區域面積為
.
(1)求的方程;
(2)設過的直線
與
交于不同的兩點
,設弦
的中點為
,且
(
為原點),求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人用一顆均勻的骰子(一種正方體玩具,六個面分別標有數字1,2,3,4,5,6)做拋擲游戲,并制定如下規則:若擲出的點數不大于4,則由原擲骰子的人繼續擲,否則,輪到對方擲.已知甲先擲.
(1)若共拋擲4次,求甲拋擲次數的概率分布列和數學期望;
(2)求第n次(,
)由乙拋擲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,
是橢圓
上一點,
軸,
.
(1)求橢圓的標準方程;
(2)若直線與橢圓
交于
、
兩點,線段
的中點為
,
為坐標原點,且
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的極坐標方程為
,圓
與直線
交于
,
兩點,
點的直角坐標為
.
(Ⅰ)將直線的參數方程化為普通方程,圓
的極坐標方程化為直角坐標方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右兩個頂點分別為
,點
為橢圓
上異于
的一個動點,設直線
的斜率分別為
,若動點
與
的連線斜率分別為
,且
,記動點
的軌跡為曲線
.
(1)當時,求曲線
的方程;
(2)已知點,直線
與
分別與曲線
交于
兩點,設
的面積為
,
的面積為
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;
(3)如果圓C上存在E,F兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com