精英家教網 > 高中數學 > 題目詳情

【題目】設偶函數的導函數是函數,當時, ,則使得成立的的取值范圍是( )

A. B.

C. D.

【答案】B

【解析】g(x)=

g′(x)= ,

x<0時,xf′(x)f(x)>0,

x<0時,g′(x)>0,

g(x)在(∞,0)上是增函數,

f(x)是偶函數,f(x)=f(x),

g(x)= ==g(x),

g(x)是奇函數,

g(x)在(0,+∞)上是增函數,

f(2)=0,∴g(2)=f(2)2=0,

g(2)=g(2)=0,

如圖示:

x>0,f(x)>0,

g(x)>0=g(2),解得:x>2,

x<0時,f(x)<0,

g(x)<g(2)=0,解得:x<2

故不等式f(x)<0的解集是(,2)∪(2,+∞),

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知
(1)求tan2α的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著醫院對看病掛號的改革,網上預約成為了當前最熱門的就診方式,這解決了看病期間病人插隊以及醫生先治療熟悉病人等諸多問題;某醫院研究人員對其所在地區年齡在10~60歲間的位市民對網上預約掛號的了解情況作出調查,并將被調查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.

(Ⅰ)若被調查的人員年齡在20~30歲間的市民有300人,求被調查人員的年齡在40歲以上(含40歲)的市民人數;

(Ⅱ)若按分層抽樣的方法從年齡在以內及以內的市民中隨機抽取5人,再從這5人中隨機抽取2人進行調研,求抽取的2人中,至多1人年齡在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從3名骨科、4名腦外科和5名內科醫生中選派5人組成一個抗震救災醫療小組,則骨科、腦外科和內科醫生都至少有1人的選派方法種數是(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設函數g(x)=f( + ),其中常數ω>0,|φ|< . (i)當ω=4,φ= 時,函數y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數g(x)的一個單調減區間內有一個零點﹣ ,且其圖象過點A( ,1),記函數g(x)的最小正周期為T,試求T取最大值時函數g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)是R上的偶函數,且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數y=f(x)的表達式,并直接寫出其單調區間(不需要證明);
(3)若f(lga)+2<0,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax﹣1(a>0,且a≠1),當x∈(0,+∞)時,f(x)>0,且函數g(x)=f(x+1)﹣4的圖象不過第二象限,則a的取值范圍是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x﹣a|+|x﹣5|.
(1)當a=1時,求f(x)的最小值;
(2)如果對任意的實數x,都有f(x)≥1成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明函數y=f(x)在區間(﹣1,+∞)上的單調性.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视