【題目】已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=-1.其中
>0且
≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解關于x的不等式-1<f(x-1)<4.
【答案】(1)0;(2);(3)見解析
【解析】
(1)由函數是奇函數,即可求得
的值;
(2)設,則
,求得
,根據函數
是奇函數,即可化簡求得函數的解析式;
(3)分類討論,得出不等式組,利用對數函數的性質,即可求解.
(1)∵f(x)是奇函數,
∴f(-2)=-f(2),即f(2)+f(-2)=0.
(2)當x<0時,-x>0,
∴f(-x)=a-x-1.
由f(x)是奇函數,有f(-x)=-f(x),
∵f(-x)=a-x-1,
∴f(x)=-a-x+1(x<0).
∴所求的解析式為f(x)= .
(3)不等式等價于 或
,
即或
.
當a>1時,有 或
,
注意此時loga2>0,loga5>0,可得此時不等式的解集為(1-loga2,1+loga5).
同理可得,當0<a<1時,不等式的解集為R.
綜上所述,當a>1時,不等式的解集為(1-loga2,1+loga5);
當0<a<1時,不等式的解集為 .
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求的單調區間;
(Ⅱ)求在區間
上的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】(Ⅰ).
令,得
.
與
的情況如上:
所以,的單調遞減區間是
,單調遞增區間是
.
(Ⅱ)當,即
時,函數
在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,
由(Ⅰ)知在
上單調遞減,在
上單調遞增,
所以在區間
上的最小值為
.
當,即
時,函數
在
上單調遞減,
所以在區間
上的最小值為
.
綜上,當時,
的最小值為
;
當時,
的最小值為
;
當時,
的最小值為
.
【題型】解答題
【結束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點
為拋物線
上一點.
(1)求的方程;
(2)若點在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
為正方形,四邊形
是矩形,平面
平面
.
(1)求證:平面平面
;
(2)若過直線的一個平面與線段
和
分別相交于點
和
(點
與點
均不重合),求證:
;
(3)判斷線段上是否存在一點
,使得平面
平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點為
,離心率為
.點
為圓
上任意一點,
為坐標原點.
(1)求橢圓的標準方程;
(2)設直線經過點
且與橢圓
相切,
與圓
相交于另一點
,點
關于原點
的對稱點為
,證明:直線
與橢圓
相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上橫坐標為4的點到焦點的距離為5.
(1)求拋物線C的方程;
(2)設直線y=kx+b與拋物線C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,過弦AB中點M作平行于x軸的直線交拋物線于點D,求△ABD的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數f(x)的兩個零點,且x2﹣x1=2,當x∈(x1 , x2)時,g(x)=﹣f(x)+2(x2﹣x)的最大值為,當a≥2時,求h(a)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,上頂點為
,若直線
的斜率為1,且與橢圓的另一個交點為
,
的周長為
.
(1)求橢圓的標準方程;
(2)過點的直線
(直線
的斜率不為1)與橢圓交于
兩點,點
在點
的上方,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一網站營銷部為統計某市網友2017年12月12日在某網店的網購情況,隨機抽查了該市60名網友在該網店的網購金額情況,如下表:
若將當日網購金額不小于2千元的網友稱為“網購達人”,網購金額小于2千元的網友稱為“網購探者”.已知“網購達人”與“網購探者”人數的比例為2:3.
(1)確定的值,并補全頻率分布直方圖;
(2)試根據頻率分布直方圖估算這60名網友當日在該網店網購金額的平均數和中位數;若平均數和中位數至少有一個不低于2千元,則該網店當日被評為“皇冠店”,試判斷該網店當日能否被評為“皇冠店”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com