【題目】已知函數,
R.
(1)若函數在
上單調遞減,在
上單調遞增,求
的值;
(2)求函數在
上的最大值;
(3)當時,若
有3個零點,求
的取值范圍.
【答案】(1)(2)
(3)
【解析】
(1)求出函數的導數,根據函數的單調性求出a值即可;(2)求出函數導數,通過討論a的范圍,求出函數最大值即可;(3)求出函數導數,根據函數的單調性求出函數的極值,結合圖象判斷a的范圍即可.
(1)由,則
.
因函數在
上單調遞減,在
上單調遞增,得
,
當時,
顯然滿足要求,所以
.
(2)因
,
,
當,即
時,
,
在
上單調遞增,
則;
當,即
時,
,
在
上單調遞減,
則;
當,即
時,當
時,
;當
時,
,
所以在
遞減,在
遞增,則
.
又,故當
時,
;
當時,
;當
時,
.
綜上,在
上的最大值
(3)因得
或
;
又,
,
,
單調遞增;
,
,
單調遞減;
,
,
單調遞增,則
,
.
令,因
R,所以
R,所以
與
圖像相同.則
的零點個數即為方程
不同實數解的個數.
①當(如圖1),即
時,
,
有唯一負實數解,則存在
使
,而
只有一個實數解,故
只有一個實數解.
②當(如圖2),即
時,
有兩個不同實數解
,
.
因,
與
各有一個實數解,故
有兩個不同的實數解.
③當時(如圖3),即
,
有三個不同實數解
,
,
,
因,
有一個實數解,則
與
只能各有一個實數解.
則由(2)可知
在
單調遞減,
單調遞增,
則
即由
得
,當
時,
,
因,
故有.
綜上,時,若
有3個零點,則
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】某廠家為了了解一款產品的質量,隨機抽取200名男性使用者和100名女性使用者,對該款產品進行評分,繪制出如下頻率分布直方圖.
(1)利用組中值(數據分組后,一個小組的組中值是指這個小組的兩個端點的數的平均數),估計100名女性使用者評分的平均值;
(2)根據評分的不同,運用分層抽樣從這200名男性中抽取20名,在這20名中,從評分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評分在區間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖的程序框圖中,若輸入,
,則輸出的
值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖的程序框圖中,若輸入,
,則輸出的
值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義在R上的奇函數,其中
為指數函數,且
的圖象過定點
.
(1)求函數的解析式;
(2)若關于x的方程,有解,求實數a的取值范圍;
(3)若對任意的,不等式
恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,
是矩形,平面
平面
,
,
,
,
為
的中點.
(1)求證:∥平面
;
(2)在線段上是否存在點
,使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2018·贛中聯考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數學家、詩人,晚年在封龍山隱居講學,數學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現有正方形方田一塊,內部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com