【題目】下列說法正確的是( )
A.點(2,0)關于直線y=x+1的對稱點為(﹣1,3)
B.過(x1,y1),(x2,y2)兩點的直線方程為
C.經過點(1,1)且在x軸和y軸上截距都相等的直線方程為x+y﹣2=0或x﹣y=0
D.直線x﹣y﹣4=0與兩坐標軸圍成的三角形的面積是8
科目:高中數學 來源: 題型:
【題目】已知數列按如下規律分布(其中
表示行數,
表示列數),若
,則下列結果正確的是( )
第1列 | 第2列 | 第3列 | 第4列 | … | ||
第1行 | 1 | 3 | 9 | 19 | 33 | |
第2行 | 7 | 5 | 11 | 21 | ||
第3行 | 17 | 15 | 13 | 23 | ||
第4行 | 31 | 29 | 27 | 25 | ||
┇ |
A.,
B.
,
C.
,
D.
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司欲生產一款迎春工藝品回饋消費者,工藝品的平面設計如圖所示,該工藝品由直角和以
為直徑的半圓拼接而成,點
為半圈上一點(異于
,
),點
在線段
上,且滿足
.已知
,
,設
.
(1)為了使工藝禮品達到最佳觀賞效果,需滿足,且
達到最大.當
為何值時,工藝禮品達到最佳觀賞效果;
(2)為了工藝禮品達到最佳穩定性便于收藏,需滿足,且
達到最大.當
為何值時,
取得最大值,并求該最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
已知函數(
為常數)的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求的值及函數
的極值;
(2)證明:當時,
(3)證明:對任意給定的正數,總存在
,使得當
時,恒有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數的部分圖象,M,N是它與x軸的兩個不同交點,D是M,N之間的最高點且橫坐標為
,點
是線段DM的中點.
(1)求函數的解析式及
上的單調增區間;
(2)若時,函數
的最小值為
,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的方程為x2+y2﹣4x﹣12=0,點P(3,1).
(1)求該圓的圓心坐標及半徑;
(2)求過點P的直線被圓C截得弦長最大時的直線l的方程;
(3)若圓C的一條弦AB的中點為P,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過長期觀察得到:在交通繁忙的時段內,某公路汽車的車流量(千輛/小時)與汽車的平均速度
(千米/小時)之間的函數關系為
(1)在該時段內,當汽車的平均速度為多少時,車流量最大,最大車流量為多少?(精確到0.1千輛/小時)
(2)若要求在該時段內車流量超過10千輛/小時,則汽車的平均速度應在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】ABC的三個角A,B,C所對的邊分別是a,b,c,向量
=(2,-1),
=(sinBsinC,
+2cosBcosC),且
⊥
.
(1)求角A的大;
(2)現給出以下三個條件:①B=45;②2sinC-(+1)sinB=0;③a=2.試從中再選擇兩個條件以確定
ABC,并求出所確定的
ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年中央電視臺春節聯歡晚會分會場之一落戶黔東南州黎平縣肇興侗寨,黔東南州某中學高二社會實踐小組就社區群眾春晚節目的關注度進行了調查,隨機抽取80名群眾進行調查,將他們的年齡分成6段: ,
,
,
,
,
,得到如圖所示的頻率分布直方圖.問:
(Ⅰ)求這80名群眾年齡的中位數;
(Ⅱ)若用分層抽樣的方法從年齡在中的群眾隨機抽取6名,并從這6名群眾中選派3人外出宣傳黔東南,求選派的3名群眾年齡在
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com