【題目】英國統計學家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結果 | 民事庭 | 行政庭 | 合計 | 終審結果 | 民事庭 | 行政庭 | 合計 |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計 | 32 | 118 | 150 | 合計 | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,
和
,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為
,
和
,則下面說法正確的是
A. ,
,
B.
,
,
C. ,
,
D.
,
,
科目:高中數學 來源: 題型:
【題目】每到春夏交替時節,雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調査了部分市民(問卷調査表如下表所示),并根據調查結果繪制了尚不完整的統計圖表(如下圖)
由兩個統計圖表可以求得,選擇D選項的人數和扇形統計圖中E的圓心角度數分別為( )
A.500,28.8°B.250,28.6°C.500,28.6°D.250,28.8°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一位發燒病人的體溫記錄折線圖,下列說法不正確的是( )
A.病人在5月13日12時的體溫是
B.病人體溫在5月14日0時到6時下降最快
C.從體溫上看,這個病人的病情在逐漸好轉
D.病人體溫在5月15日18時開始逐漸穩定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在上任意一點
處的切線
為
,若過右焦點
的直線
交橢圓
于
兩點,已知在點
處切線相交于
.
(Ⅰ)求點的軌跡方程;
(Ⅱ)①若過點且與直線
垂直的直線(斜率存在且不為零)交橢圓
于
兩點,證明
為定值.
②四邊形的面積是否有最小值,若有請求出最小值;若沒有請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廠家在產品出廠前,需對產品做檢驗,廠家將一批產品發給商家時,商家按合同規定也需隨機抽取一定數量的產品做檢驗,以決定是否接收這批產品.
(1)若廠家庫房中(視為數量足夠多)的每件產品合格的概率為 從中任意取出 3件進行檢驗,求至少有
件是合格品的概率;
(2)若廠家發給商家 件產品,其中有
不合格,按合同規定 商家從這
件產品中任取
件,都進行檢驗,只有
件都合格時才接收這批產品,否則拒收.求該商家可能檢驗出的不合格產品的件數ξ的分布列,并求該商家拒收這批產品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業質量檢驗員為了檢測生產線上零件的情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:
(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到
);
(2)已知尺寸在上的零件為一等品,否則為二等品. 將這
個零件尺寸的樣本頻率視為概率,從生產線上隨機抽取
個零件,試估計所抽取的零件是二等品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,直線將矩形紙
分為兩個直角梯形
和
,將梯形
沿邊
翻折,如圖2,在翻折的過程中(平面
和平面
不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面
恒成立
D.在翻折的過程中,平面
恒成立
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)3,g(x)=alnx﹣2x(a∈R).
(1)討論g(x)的單調性;
(2)是否存在實數a,使不等式f(x)≥g(x)恒成立?如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大約在20世紀30年代,世界上許多國家都流傳著這樣一個題目:任取一個正整數,如果它是偶數,則除以2;如果它是奇數,則將它乘以3加1,這樣反復運算,最后結果必然是1.這個題目在東方被稱為“角谷猜想”,世界一流的大數學家都被其卷入其中,用盡了各種方法,甚至動用了最先進的電子計算機,驗算到對700億以內的自然數上述結論均為正確的,但卻給不出一般性的證明.例如取
,則要想算出結果1,共需要經過的運算步數是( )
A.9B.10C.11D.12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com