【題目】判斷下列各組函數是否為相等函數:
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)= .
科目:高中數學 來源: 題型:
【題目】已知正數數列{xn}滿足x1= ,xn+1=
,n∈N* .
(1)求x2 , x4 , x6 .
(2)猜想數列{x2n}的單調性,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (0<x<π),g(x)=(x﹣1)lnx+m(m∈R)
(Ⅰ)求f(x)的單調區間;
(Ⅱ)求證:1是g(x)的唯一極小值點;
(Ⅲ)若存在a,b∈(0,π),滿足f(a)=g(b),求m的取值范圍.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義域為R的偶函數,當x≥0時,f(x)= .
(1)求x<0時,f(x)的解析式;
(2)畫出函數f(x)在R上的圖象;
(3)結合圖象寫出f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=aex﹣x﹣1,a∈R. (Ⅰ)當a=1時,求f(x)的單調區間;
(Ⅱ)當x∈(0,+∞)時,f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當x∈(0,+∞)時,ln >
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對的邊,角C是鈍角,且sinB= . (Ⅰ)求角C的值;
(Ⅱ)若b=2,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】形如y= (c>0,b>0)的函數因其圖象類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數”.若函數f(x)=loga(x2+x+1)(a>0,a≠1)有最小值,則當c,b的值分別為方程x2+y2﹣2x﹣2y+2=0中的x,y時的“囧函數”與函數y=loga|x|的圖象交點個數為( )
A.1
B.2
C.4
D.6
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com