精英家教網 > 高中數學 > 題目詳情

【題目】某人經營一個抽獎游戲,顧客花費元錢可購買一次游戲機會,每次游戲中,顧客從裝有個黑球,個紅球,個白球的不透明袋子中依次不放回地摸出個球(除顏色外其他都相同),根據摸出的球的顏色情況進行兌獎.顧客獲得一等獎、二等獎、三等獎、四等獎時分別可領取獎金元,元、元、元.若經營者將顧客摸出的個球的顏色情況分成以下類別:個黑球,個紅球;個紅球;:恰有個白球;:恰有個白球;個白球,且經營者計劃將五種類別按照發生機會從小到大的順序分別對應中一等獎、中二等獎、中三等獎、中四等獎、不中獎五個層次.

(1)請寫出一至四等獎分別對應的類別(寫出字母即可);

(2)若經營者不打算在這個游戲的經營中虧本,求的最大值;

(3)若,當顧客摸出的第一個球是紅球時,求他領取的獎金的平均值.

【答案】(1) 中一至四等獎分別對應的類別是,,,.

(2)的最大值為元.

(3)此時顧客領取的獎金的平均值為元.

【解析】

試題分析:(1)由古典概型分別求出,由概率大小可得到一至四等獎分別對應的類別;(2)求出期望,大于或等于0即可得到的最大值;(3)若,當顧客摸出的第一個球是紅球時,成為他將率,分別在這種情況下求出一等獎、中二等獎、中三等獎、中四等獎的概率,再求期望即可

試題解析:(;;

;;

,

中一至四等獎分別對應的類別是BA,EC.

2)設顧客進行一次游戲經營者可盈利X元,則

.a的最大值為74.

(3)此時中一等獎的概率;中二等獎的概率;

中三等獎的概率;中四等獎的概率;

.

即此時顧客領取的獎金的平均值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數

2

16

36

25

7

4

以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統計,依據統計結果繪制如下頻率分

布直方圖:

(1)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;

(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠越好),并從抽到的這7次成績中隨機抽取2次.規定:這2次成績均來自到籃筐中心的水平距離為4到5米的這一組,記 1分,否則記0分.求該運動員得1分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

極坐標系與直角坐標系有相同的長度單位,以坐標原點為極點,以軸正半軸為極軸.已知曲線的極坐標方程為,曲線的極坐標方程為,射線與曲線分別交異于極點的四點.

(1)若曲線關于曲線對稱,求的值,并把曲線化成直角坐標方程;

(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點為拋物線的焦點,為拋物線上三點,且點在第一象限,直線經過點與拋物線在點處的切線平行,點的中點.

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線與橢圓相交于,兩個不同的點,與軸相交于點為坐標原點.

(1)證明:;

(2)若,求的面積取得最大值時橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:

為事件:“乙離子殘留在體內的百分比不低于”,根據直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區間的中點值為代表).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實驗室每天每100顆種子的發芽數,得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發芽數(顆)

38

30

24

41

17

利用散點圖,可知線性相關。

(1)求出關于的線性回歸方程,若4月6日星夜溫差,請根據你求得的線性同歸方程預測4月6日這一天實驗室每100顆種子中發芽顆數;

(2)若從4月1日 4月5日的五組實驗數據中選取2組數據,求這兩組恰好是不相鄰兩天數據的概率.

(公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產的產品在出廠前都要做質量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現有10件產品,其中6件是一等品,4件是二等品.

(Ⅰ) 隨機選取1件產品,求能夠通過檢測的概率;

(Ⅱ)隨機選取3件產品,其中一等品的件數記為,求的分布列;

(Ⅲ)隨機選取3件產品,求這三件產品都不能通過檢測的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视