精英家教網 > 高中數學 > 題目詳情

【題目】分形幾何學是數學家伯努瓦·曼得爾布羅在20世紀70年代創立的一門新的數學學科,它的創立為解決傳統科學眾多領域的難題提供了全新的思路.按照如圖甲所示的分形規律可得如圖乙所示的一個樹形圖:記圖乙中第行黑圈的個數為,則(1_______;(2______

【答案】13

【解析】

觀察圖形,歸納規律,得到結論.

根據圖甲所示的分形規律,1個白圈分形為2個白圈1個黑圈,1個黑圈分形為1個白圈2個黑圈,
第一行記為,第二行記為,第三行記為,第四行的白圈數為;黑圈數為
第四行的“坐標”為;
第五行的“坐標”為
各行白圈數乘以2,分別是2,4,10,28,82,即,,,
n行的白圈數為,黑圈數為白圈數減1,即

故答案為:13,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數學家謝爾賓斯基在1915年提出.具體操作是:先取一個實心正三角形(圖1),挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形)(圖2),然后在剩下的三個小三角形中又各挖去一個“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續地作下去.若設操作次數為3(每挖去一次中心三角形算一次操作),在圖中隨機選取一個點,則此點取自黑色三角形的概率為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數,不等式的解集有且只有一個元素,設數列的前項和.

1)求數列的通項公式;

2)若數列滿足,求數列的前項和.

3)設各項均不為0的數列中,滿足的正整數的個數稱為這個數列的變號數,令,求數列的變號數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,點是圓上一動點,動點滿足,點在直線上,且.

1)求點的軌跡的標準方程;

2)已知點在直線上,過點作曲線的兩條切線,切點分別為,記點到直線的距離分別為,求的最大值,并求出此時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線的焦點為F,過點F的直線交拋物線于A,B兩點.

1)若,求直線AB的斜率;

2)設點M在線段AB上運動,原點O關于點M的對稱點為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定合格”“不合格兩個等級,同時對相應等級進行量化:合格5分,不合格0分.現隨機抽取部分學生的答卷,統計結果及對應的頻率分布直方圖如下:

等級

不合格

合格

得分

頻數

6

24

1)由該題中頻率分布直方圖求測試成績的平均數和中位數;

2)其他條件不變,在評定等級為合格的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;

3)用分層抽樣的方法,從評定等級為合格不合格的學生中抽取10人進行座談.現再從這10人中任選4人,記所選4人的量化總分為,求的數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象在處的切線方程是.

1)求的值;

2)若函數,討論的單調性與極值;

3)證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的方程為,定點,點是曲線上的動點, 的中點.

(1)求點的軌跡的直角坐標方程;

(2)已知直線軸的交點為,與曲線的交點為,若的中點為,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長度為的線段的兩個端點分別在軸和軸上運動,動點滿足,設動點的軌跡為曲線.

1)求曲線的方程;

2)過點,且斜率不為零的直線與曲線交于兩點,在軸上是否存在定點,使得直線的斜率之積為常數?若存在,求出定點的坐標以及此常數;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视