精英家教網 > 高中數學 > 題目詳情

【題目】已知,,若動點滿足:.

1)求動點的軌跡的方程;

2)若點分別位于軸與軸的正半軸上,直線與曲線相交于兩點,且,請問在曲線上是否存在點,使得四邊形為坐標原點)為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.

【答案】12)不存在,見解析。

【解析】

1)根據橢圓的定義,由,知動點的軌跡是以,為焦點的橢圓,然后再求方程.

2)根據題意,設,直線AB的方程,與橢圓方程聯立得 , ,假設存在點使得四邊形為坐標原點)為平行四邊形,則 ,即,將,代入橢圓方程驗證.

1)因為

所以動點的軌跡是以,為焦點的橢圓.

所以 ,

所以動點的軌跡的方程是 .

2)根據題意,設,且

直線的方程 ,

與橢圓方程聯立得 ,

,

假設存在點使得四邊形為坐標原點)為平行四邊形,

,

所以,

所以.

,方程無解,所以不存在.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點在圓柱的底面圓上,為圓的直徑.

1)求證:

2)若圓柱的體積,,,求異面直線所成的角(用反三角函數值表示結果).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來.隨著計劃生育政策效果的逐步顯現以及老齡化的加劇,我國經濟發展的“人口紅利”在逐漸消退,在當前形勢下,很多二線城市開始了搶人大戰”,自2018年起,像西安、南京等二線城市人才引進與落戶等政策放寬力度空前,至2019年發布各種人才引進與落戶等政策的城市已經有16個。某二線城市與2018年初制定人才引進與落戶新政(即放寬政策,以下簡稱新政):碩士研究生及以上可直接落戶并享有當地政府依法給與的住房補貼,本科學歷畢業生可以直接落戶,?茖W歷畢業生在當地工作兩年以上可以落戶。高中及以下學歷人員在當地工作10年以上可以落戶。新政執行一年,2018年全年新增落戶人口較2017年全年增加了一倍,為了深入了解新增落戶人口結構及變化情況,相關部門統計了該市新政執行前一年(即2017年)與新政執行一年(即2018年)新增落戶人口學歷構成比例,得到如下餅圖:

則下面結論中錯誤的是(

A. 新政實施后,新增落戶人員中本科生已經超過半數

B. 新政實施后,高中及以下學歷人員新增落戶人口減少

C. 新政對碩士研究生及以上的新增落戶人口數量暫時未產生影響

D. 新政對?粕谠撌新鋵嵠鸬搅朔e極的影響

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年1月4日,據“央視財經”微信公眾號消息,點外賣已成為眾多消費者一大常規的就餐形式,外賣員也成為了一種職業.為調查某外賣平臺外賣員的送餐收入,現從該平臺隨機抽取100名點外賣的用戶進行統計,按送餐距離分類統計得如下頻率分布直方圖:

將上述調查所得到的頻率視為概率.

(1)求的值,并估計利用該外賣平臺點外賣用戶的平均送餐距離;

(2)若該外賣平臺給外賣員的送餐費用與送餐距離有關,規定2千米內為短距離,每份3元,2千米到4千米為中距離,每份5元,超過4千米為遠距離,每份9元.

(i)記為外賣員送一份外賣的牧入(單位:元),求的分布列和數學期望;

(ii)若外賣員一天的收入不低于150元,試利用上述數據估計該外賣員一天的送餐距離至少為多少千米?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個極值點,求的取值范圍,并證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是菱形,交于點,底面,的中點,.

(1)求證: 平面;

(2)求異面直線所成角的余弦值;

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點C在AB上,且ABCD,AC=BC=CD=2,現將△ACD沿CD折起,使點A到達點P的位置,且PE.

(1)求證:平面PBC 平面DEBC;

(2)求三棱錐P-EBC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數,),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)寫出當時直線的普通方程和曲線的直角坐標方程;

(Ⅱ)已知點,直線與曲線相交于不同的兩點,,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,圓的直角坐標方程為,直線的參數方程為為參數),射線的極坐標方程為

1)求圓和直線的極坐標方程;

(2)已知射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视