【題目】已知函數f(x)= ,g(x)=f(x)﹣a
(1)當a=2時,求函數g(x)的零點;
(2)若函數g(x)有四個零點,求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個零點分別為x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范圍.
【答案】
(1)解:當x>0時,由|lnx|=2解得x=e2或x= ,
當x≤0時,由x2+4x+1=2解得x=﹣2+ (舍)或x=﹣2﹣
,
∴函數g(x)有三個零點,分別為x=e2或x= ,x=﹣2﹣
.
(2)解:函數g(x)=f(x)﹣a的零點個數即f(x)的圖象與c的圖象的交點個數,
作函數f(x)的圖象y=a的圖象,結合兩函數圖象可知,
函數g(x)有四個零點時a的取值范圍是0<a≤1;
(3)解:不妨設x1<x2<x3<x4,結合圖象知x1+x2=﹣4且0<x3<1,x4>1,
由|lnx3|=|lnx4|=a,知x3x4=1且x4∈(1,e],
∴x3+x4= +x4∈(2,e+
],
故x1+x2+x3+x4的取值范圍是∈(﹣2,e+ ﹣4]
【解析】(1)根據函數零點的定義解方程即可.(2)利用函數與方程之間的關系轉化為兩個函數的交點個數問題,利用數形結合進行判斷求解.(3)根據函數圖象結合函數的對稱性進行判斷即可.
科目:高中數學 來源: 題型:
【題目】在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月1日至30日,評委會把同學們上交作品的件數按照5天一組分組統計,繪制了頻率分布直方圖(如圖所示).已知從左到右各長方形的高的比為2:3:4:6:4:1,第三組的頻數為12,請解答下列各題.
(1)本次活動共有多少件作品參加評比?
(2)哪組上交的作品數量最多?有多少件?
(3)經過評比,第四組和第六組分別有10件2件作品獲獎,問這兩組哪一組獲獎率較高?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數f(x)=lg(2x+a)的定義域為集合C,滿足AC,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若奇函數f(x)在其定義域R上是減函數,且對任意的x∈R,不等式f(cos2x+sinx)+f(sinx﹣a)≤0恒成立,則a的最大值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行購物抽獎活動,抽獎箱中放有除編號不同外,其余均相同的20個小球,這20個小球編號的莖葉圖如圖所示,活動規則如下:從抽獎箱中隨機抽取一球,若抽取的小球編號是十位數字為l的奇數,則為一等獎,獎金100元;若抽取的小球編號是十位數字為2的奇數,則為二等獎,獎金50元;若抽取的小球是其余編號則不中獎.現某顧客有放回的抽獎兩次,兩次抽獎相互獨立. (I)求該顧客在兩次抽獎中恰有一次中獎的概率;
(Ⅱ)記該顧客兩次抽獎后的獎金之和為隨機變量X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1在平面直角坐標系中的參數方程為(t為參數),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ-4sinθ
(1)將C1的方程化為普通方程,并求出C2的平面直角坐標方程
(2)求曲線C1和C2兩交點之間的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(sinx+cosx)2+2cos2x
(1)求函數f(x)的最小正周期和單調減區間;
(2)求使f(x)≥3成立的x的取值集合.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com